A081566 Second binomial transform of expansion of exp(3cosh(x)).
1, 2, 7, 26, 118, 572, 3127, 18146, 114793, 765602, 5463982, 40870436, 323326813, 2667777842, 23092966267, 207651618746, 1947316349278, 18906249136892, 190564801592107, 1982986181092226, 21345005629846213, 236628248493001202
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
Programs
-
Magma
m:=30; R
:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!( Exp(3*Cosh(x)+2*x-3) )); [Factorial(n-1)*b[n]: n in [1..m]]; // G. C. Greubel, Aug 13 2019 -
Maple
seq(coeff(series(exp(3*cosh(x)+2*x-3), x, n+1)*factorial(n), x, n), n = 0 .. 30); # G. C. Greubel, Aug 13 2019
-
Mathematica
With[{nn = 30}, CoefficientList[Series[Exp[3 Cosh[x] + 2 x - 3], {x, 0, nn}], x] Range[0, nn]!] (* Vincenzo Librandi, Aug 08 2013 *)
-
PARI
my(x='x+O('x^30)); Vec(serlaplace( exp(3*cosh(x)+2*x-3) )) \\ G. C. Greubel, Aug 13 2019
-
Sage
[factorial(n)*( exp(3*cosh(x)+2*x-3) ).series(x,n+1).list()[n] for n in (0..30)] # G. C. Greubel, Aug 13 2019
Formula
E.g.f.: exp(2*x) * exp(3*cosh(x))/e^3 = exp(3*cosh(x)+2*x-3).
Comments