cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A081576 Square array of binomial transforms of Fibonacci numbers, read by antidiagonals.

Original entry on oeis.org

0, 0, 1, 0, 1, 1, 0, 1, 3, 2, 0, 1, 5, 8, 3, 0, 1, 7, 20, 21, 5, 0, 1, 9, 38, 75, 55, 8, 0, 1, 11, 62, 189, 275, 144, 13, 0, 1, 13, 92, 387, 905, 1000, 377, 21, 0, 1, 15, 128, 693, 2305, 4256, 3625, 987, 34, 0, 1, 17, 170, 1131, 4955, 13392, 19837, 13125, 2584, 55
Offset: 0

Views

Author

Paul Barry, Mar 22 2003

Keywords

Comments

Array rows are solutions of the recurrence a(n) = (2*k+1)*a(n-1) - A028387(k-1)*a(n-2) where a(0) = 0 and a(1) = 1.

Examples

			Square array begins as:
  0, 1,  1,   2,    3,    5,     8, ... A000045;
  0, 1,  3,   8,   21,   55,   144, ... A001906;
  0, 1,  5,  20,   75,  275,  1000, ... A030191;
  0, 1,  7,  38,  189,  905,  4256, ... A099453;
  0, 1,  9,  62,  387, 2305, 13392, ... A081574;
  0, 1, 11,  92,  693, 4955, 34408, ... A081575;
  0, 1, 13, 128, 1131, 9455, 76544, ...
The antidiagonal triangle begins as:
  0;
  0, 1;
  0, 1,  1;
  0, 1,  3,  2;
  0, 1,  5,  8,   3;
  0, 1,  7, 20,  21,   5;
  0, 1,  9, 38,  75,  55,   8;
  0, 1, 11, 62, 189, 275, 144, 13;
		

Crossrefs

Array row n: A000045 (n=0), A001906 (n=1), A030191 (n=2), A099453 (n=3), A081574 (n=4), A081575 (n=5).
Array columns k: A005408 (k=3), A077588 (k=4).

Programs

  • Magma
    A081576:= func< n,k | (&+[Binomial(k,j)*Fibonacci(j)*(n-k)^(k-j): j in [0..k]]) >;
    [A081576(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, May 26 2021
    
  • Mathematica
    T[n_, k_]:= If[n==0, Fibonacci[k], Sum[Binomial[k, j]*Fibonacci[j]*n^(k-j), {j, 0, k}]]; Table[T[n-k, k], {n,0,12}, {k,0,n}] //Flatten (* G. C. Greubel, May 26 2021 *)
  • Sage
    def A081576(n,k): return sum( binomial(k,j)*fibonacci(j)*(n-k)^(k-j) for j in (0..k) )
    flatten([[A081576(n,k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, May 26 2021

Formula

Rows are successive binomial transforms of F(n).
T(n, k) = ( ( (2*n + 1 + sqrt(5))/2 )^k - ( (2*n + 1 - sqrt(5))/2 )^k )/sqrt(5).
From G. C. Greubel, May 26 2021: (Start)
T(n, k) = Sum_{j=0..k} binomial(k,j)*Fibonacci(j)*n^(k-j) with T(0, k) = Fibonacci(k) (square array).
T(n, k) = Sum_{j=0..k} binomial(k,j)*Fibonacci(j)*(n-k)^(k-j) (antidiagonal triangle). (End)