A081576 Square array of binomial transforms of Fibonacci numbers, read by antidiagonals.
0, 0, 1, 0, 1, 1, 0, 1, 3, 2, 0, 1, 5, 8, 3, 0, 1, 7, 20, 21, 5, 0, 1, 9, 38, 75, 55, 8, 0, 1, 11, 62, 189, 275, 144, 13, 0, 1, 13, 92, 387, 905, 1000, 377, 21, 0, 1, 15, 128, 693, 2305, 4256, 3625, 987, 34, 0, 1, 17, 170, 1131, 4955, 13392, 19837, 13125, 2584, 55
Offset: 0
Examples
Square array begins as: 0, 1, 1, 2, 3, 5, 8, ... A000045; 0, 1, 3, 8, 21, 55, 144, ... A001906; 0, 1, 5, 20, 75, 275, 1000, ... A030191; 0, 1, 7, 38, 189, 905, 4256, ... A099453; 0, 1, 9, 62, 387, 2305, 13392, ... A081574; 0, 1, 11, 92, 693, 4955, 34408, ... A081575; 0, 1, 13, 128, 1131, 9455, 76544, ... The antidiagonal triangle begins as: 0; 0, 1; 0, 1, 1; 0, 1, 3, 2; 0, 1, 5, 8, 3; 0, 1, 7, 20, 21, 5; 0, 1, 9, 38, 75, 55, 8; 0, 1, 11, 62, 189, 275, 144, 13;
Links
- G. C. Greubel, Antidiagonal rows n = 0..50, flattened
Crossrefs
Programs
-
Magma
A081576:= func< n,k | (&+[Binomial(k,j)*Fibonacci(j)*(n-k)^(k-j): j in [0..k]]) >; [A081576(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, May 26 2021
-
Mathematica
T[n_, k_]:= If[n==0, Fibonacci[k], Sum[Binomial[k, j]*Fibonacci[j]*n^(k-j), {j, 0, k}]]; Table[T[n-k, k], {n,0,12}, {k,0,n}] //Flatten (* G. C. Greubel, May 26 2021 *)
-
Sage
def A081576(n,k): return sum( binomial(k,j)*fibonacci(j)*(n-k)^(k-j) for j in (0..k) ) flatten([[A081576(n,k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, May 26 2021
Formula
Rows are successive binomial transforms of F(n).
T(n, k) = ( ( (2*n + 1 + sqrt(5))/2 )^k - ( (2*n + 1 - sqrt(5))/2 )^k )/sqrt(5).
From G. C. Greubel, May 26 2021: (Start)
T(n, k) = Sum_{j=0..k} binomial(k,j)*Fibonacci(j)*n^(k-j) with T(0, k) = Fibonacci(k) (square array).
T(n, k) = Sum_{j=0..k} binomial(k,j)*Fibonacci(j)*(n-k)^(k-j) (antidiagonal triangle). (End)
Comments