A081582 Pascal-(1,7,1) array.
1, 1, 1, 1, 9, 1, 1, 17, 17, 1, 1, 25, 97, 25, 1, 1, 33, 241, 241, 33, 1, 1, 41, 449, 1161, 449, 41, 1, 1, 49, 721, 3297, 3297, 721, 49, 1, 1, 57, 1057, 7161, 14721, 7161, 1057, 57, 1, 1, 65, 1457, 13265, 44961, 44961, 13265, 1457, 65, 1, 1, 73, 1921, 22121, 108353, 192969, 108353, 22121, 1921, 73, 1
Offset: 0
Examples
Rows begin 1, 1, 1, 1, 1, ... A000012; 1, 9, 17, 25, 33, ... A017077; 1, 17, 97, 241, 449, ... A081593; 1, 25, 241, 1161, 3297, ... 1, 33, 449, 3297, 14721, ... Triangle begins: 1; 1, 1; 1, 9, 1; 1, 17, 17, 1; 1, 25, 97, 25, 1; 1, 33, 241, 241, 33, 1; 1, 41, 449, 1161, 449, 41, 1; 1, 49, 721, 3297, 3297, 721, 49, 1; 1, 57, 1057, 7161, 14721, 7161, 1057, 57, 1;
Links
- Vincenzo Librandi, Rows n = 0..100, flattened
Crossrefs
Programs
-
Magma
A081582:= func< n,k,q | (&+[Binomial(k, j)*Binomial(n-j, k)*q^j: j in [0..n-k]]) >; [A081582(n,k,7): k in [0..n], n in [0..12]]; // G. C. Greubel, May 26 2021
-
Mathematica
Table[ Hypergeometric2F1[-k, k-n, 1, 8], {n,0,10}, {k,0,n}]//Flatten (* Jean-François Alcover, May 24 2013 *)
-
Sage
flatten([[hypergeometric([-k, k-n], [1], 8).simplify() for k in (0..n)] for n in (0..12)]) # G. C. Greubel, May 26 2021
Formula
T(n,k) = Sum_{j = 0..n-k} binomial(n-k,j)*binomial(k,j)*8^j.
Riordan array (1/(1 - x), x*(1 + 7*x)/(1 - x)).
Square array T(n, k) defined by T(n, 0) = T(0, k)=1, T(n, k) = T(n, k-1) + 7*T(n-1, k-1) + T(n-1, k).
Rows are the expansions of (1 + 7*x)^k/(1 - x)^(k+1).
T(n, k) = Hypergeometric2F1([-k, k-n], [1], 8). - Jean-François Alcover, May 24 2013
E.g.f. for the n-th subdiagonal, n = 0,1,2,..., equals exp(x)*P(n,x), where P(n,x) is the polynomial Sum_{k = 0..n} binomial(n,k)*(8*x)^k/k!. For example, the e.g.f. for the second subdiagonal is exp(x)*(1 + 16*x + 64*x^2/2) = 1 + 17*x + 97*x^2/2! + 241*x^3/3! + 449*x^4/4! + 721*x^5/5! + .... - Peter Bala, Mar 05 2017
Sum_{k=0..n} T(n, k) = A015519(n+1). - G. C. Greubel, May 26 2021
Comments