cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A081591 Third row of Pascal-(1,6,1) array A081581.

Original entry on oeis.org

1, 15, 78, 190, 351, 561, 820, 1128, 1485, 1891, 2346, 2850, 3403, 4005, 4656, 5356, 6105, 6903, 7750, 8646, 9591, 10585, 11628, 12720, 13861, 15051, 16290, 17578, 18915, 20301, 21736, 23220, 24753, 26335, 27966, 29646, 31375, 33153, 34980, 36856, 38781, 40755
Offset: 0

Views

Author

Paul Barry, Mar 23 2003

Keywords

Comments

1. Smallest triangular number T(k) (other than the trivial adjacent ones) such that T(n) + T(k) is a square. T(n-1) and T(n+1) are trivial triangular numbers such that T(n) + T(n-1) and T(n) + T(n+1) both are squares. 0+1 = 1, 1+15 = 16, 3+78 = 81, 6+190 = 196 etc. 2. (7n+5)-th triangular number. - Amarnath Murthy, Jun 20 2003

Crossrefs

Programs

  • Magma
    [(2-21*n+49*n^2)/2: n in [0..50]]; // Vincenzo Librandi, Jun 18 2011
    
  • Mathematica
    Table[(2-21n+49n^2)/2,{n,0,40}] (* or *) LinearRecurrence[{3,-3,1},{1,15,78},40] (* Harvey P. Dale, Aug 03 2012 *)
  • PARI
    a(n)=(2-21*n+49*n^2)/2 \\ Charles R Greathouse IV, Jun 17 2017

Formula

a(n) = (2 - 21*n + 49*n^2)/2.
G.f.: (1+6*x)^2/(1-x)^3.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3); a(0)=1, a(1)=15, a(2)=78. - Harvey P. Dale, Aug 03 2012
E.g.f.: exp(x)*(2 + 28*x + 49*x^2)/2. - Elmo R. Oliveira, Jun 09 2025