A081614 Subsequence of A005428 with state = 1.
1, 4, 6, 9, 31, 70, 105, 355, 799, 1798, 2697, 9103, 20482, 30723, 69127, 155536, 233304, 349956, 524934, 787401, 2657479, 5979328, 8968992, 13453488, 20180232, 30270348, 45405522, 68108283, 153243637, 1745540806, 2618311209, 8836800331, 19882800745, 67104452515, 150985018159, 339716290858, 509574436287, 1146542481646, 1719813722469, 13059835455001, 44076944660629, 753095921662471, 1694465823740560
Offset: 0
References
- Fred Schuh, The Master Book of Mathematical Recreations, Dover, New York, 1968. [See Table 18, p. 374.]
Links
- David A. Corneth, Table of n, a(n) for n = 0..2816
- K. Burde, Das Problem der Abzählreime und Zahlentwicklungen mit gebrochenen Basen [The problem of counting rhymes and number expansions with fractional bases], J. Number Theory 26(2) (1987), 192-209. [The author deals with the representation of n in fractional bases k/(k-1) and its relation to counting-off games. Here k = 3. See the table on p. 207. See also the review in MathSciNet (MR0889384) by R. G. Stoneham.]
- Index entries for sequences related to the Josephus Problem
Programs
-
PARI
/* In the program below, we use a truncated version of either A005428 or A073941 and choose those terms that correspond to "state" or "number of last survivor" equal to 1. See A073941 or Schuh (1968) for more details. */ first(n) = {my(res = vector(n), t = 1, wn = wo = 4, go = gn = 1); res[1] = 1; for(i = 1, oo, c = wo % 2; if(go == 1, t++; res[t] = wo; if(t >= n, return(res) ) ); wn = floor(wo*3/2) + c * (2 - go); gn = 3 * c + go * (-1)^c; wo = wn; go = gn; ) } \\ David A. Corneth and Petros Hadjicostas, Jul 20 2020
Formula
a(n) = [(n+1)-th even number of A061419]/2. - John-Vincent Saddic, May 29 2021
Extensions
More terms from Hans Havermann, Apr 23 2003
Comments