A081658 Triangle read by rows: T(n, k) = (-2)^k*binomial(n, k)*Euler(k, 1/2).
1, 1, 0, 1, 0, -1, 1, 0, -3, 0, 1, 0, -6, 0, 5, 1, 0, -10, 0, 25, 0, 1, 0, -15, 0, 75, 0, -61, 1, 0, -21, 0, 175, 0, -427, 0, 1, 0, -28, 0, 350, 0, -1708, 0, 1385, 1, 0, -36, 0, 630, 0, -5124, 0, 12465, 0, 1, 0, -45, 0, 1050, 0, -12810, 0, 62325, 0, -50521, 1, 0, -55, 0, 1650, 0, -28182, 0, 228525, 0, -555731, 0, 1, 0, -66, 0, 2475, 0
Offset: 0
Examples
The triangle begins [0] 1; [1] 1, 0; [2] 1, 0, -1; [3] 1, 0, -3, 0; [4] 1, 0, -6, 0, 5; [5] 1, 0, -10, 0, 25, 0; [6] 1, 0, -15, 0, 75, 0, -61; [7] 1, 0, -21, 0, 175, 0, -427, 0; ... From _Peter Luschny_, Sep 17 2021: (Start) The triangle shows the coefficients of the following polynomials: [1] 1; [2] 1 - x^2; [3] 1 - 3*x^2; [4] 1 - 6*x^2 + 5*x^4; [5] 1 - 10*x^2 + 25*x^4; [6] 1 - 15*x^2 + 75*x^4 - 61*x^6; [7] 1 - 21*x^2 + 175*x^4 - 427*x^6; ... These polynomials are the permanents of the n X n matrices with all entries above the main antidiagonal set to 'x' and all entries below the main antidiagonal set to '-x'. The main antidiagonals consist only of ones. Substituting x <- 1 generates the Euler tangent numbers A155585. (Compare with A046739.) (End)
Programs
-
Maple
ogf := n -> euler(n) / (1 - x)^(n + 1): ser := n -> series(ogf(n), x, 16): T := (n, k) -> coeff(ser(k), x, n - k): for n from 0 to 9 do seq(T(n, k), k = 0..n) od; # Peter Luschny, Jun 05 2023 T := (n, k) -> (-2)^k*binomial(n, k)*euler(k, 1/2): seq(seq(T(n, k), k = 0..n), n = 0..9); # Peter Luschny, Apr 03 2024
-
Mathematica
sk[n_, x_] := Sum[Binomial[n, k]*EulerE[k]*x^(n - k), {k, 0, n}]; Table[CoefficientList[sk[n, x], x] // Reverse, {n, 0, 12}] // Flatten (* Jean-François Alcover, Jun 04 2019 *) Flatten@Table[Binomial[n, k] EulerE[k], {n, 0, 12}, {k, 0, n}] (* Oliver Seipel, Jan 14 2025 *)
-
Python
from functools import cache @cache def T(n: int, k: int) -> int: if k == 0: return 1 if k % 2 == 1: return 0 if k == n: return -sum(T(n, j) for j in range(0, n - 1, 2)) return (T(n - 1, k) * n) // (n - k) for n in range(10): print([T(n, k) for k in range(n + 1)]) # Peter Luschny, Jun 05 2023
-
Sage
R = PolynomialRing(ZZ, 'x') @CachedFunction def p(n, x) : if n == 0 : return 1 return add(p(k, 0)*binomial(n, k)*(x^(n-k)-(n+1)%2) for k in range(n)[::2]) def A081658_row(n) : return [R(p(n,x)).reverse()[i] for i in (0..n)] for n in (0..8) : print(A081658_row(n)) # Peter Luschny, Jul 20 2012
Formula
Coefficients of the polynomials in k in the binomial transform of the expansion of 2/(exp(kx)+exp(-kx)).
From Peter Luschny, Jul 20 2012: (Start)
p{n}(0) = Signed Euler secant numbers A122045.
p{n}(1) = Signed Euler tangent numbers A155585.
p{n}(2) has e.g.f. 2*exp(x)/(exp(-2*x)+1) A119880.
2^n*p{n}(1/2) = Signed Springer numbers A188458.
3^n*p{n}(1/3) has e.g.f. 2*exp(4*x)/(exp(6*x)+1)
4^n*p{n}(1/4) has e.g.f. 2*exp(5*x)/(exp(8*x)+1).
The GCD of the rows without the first column: A155457. (End)
From Peter Luschny, Jun 05 2023: (Start)
T(n, k) = [x^(n - k)] Euler(k) / (1 - x)^(k + 1).
For a recursion see the Python program.
Conjecture: If n is prime then n divides T(n, k) for 1 <= k <= n-1. (End)
Extensions
Typo in data corrected by Peter Luschny, Jul 20 2012
Error in data corrected and new name by Peter Luschny, Apr 03 2024
Comments