cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A363394 Triangle read by rows. T(n, k) = A081658(n, k) + A363393(n, k) for k > 0 and T(n, 0) = 1.

Original entry on oeis.org

1, 1, 1, 1, 2, -1, 1, 3, -3, -2, 1, 4, -6, -8, 5, 1, 5, -10, -20, 25, 16, 1, 6, -15, -40, 75, 96, -61, 1, 7, -21, -70, 175, 336, -427, -272, 1, 8, -28, -112, 350, 896, -1708, -2176, 1385, 1, 9, -36, -168, 630, 2016, -5124, -9792, 12465, 7936
Offset: 0

Views

Author

Peter Luschny, Jun 06 2023

Keywords

Examples

			The triangle T(n, k) begins:
  [0] 1;
  [1] 1, 1;
  [2] 1, 2,  -1;
  [3] 1, 3,  -3,   -2;
  [4] 1, 4,  -6,   -8,   5;
  [5] 1, 5, -10,  -20,  25,   16;
  [6] 1, 6, -15,  -40,  75,   96,   -61;
  [7] 1, 7, -21,  -70, 175,  336,  -427,  -272;
  [8] 1, 8, -28, -112, 350,  896, -1708, -2176,  1385;
  [9] 1, 9, -36, -168, 630, 2016, -5124, -9792, 12465, 7936;
		

Crossrefs

Variants (row reversed): A109449, A247453.
Cf. A081658 (signed secant part), A363393 (signed tangent part), A000111 (main diagonal), A122045, A155585 (aerated main diagonal), A000667, A062162 (row sums of signless variant).

Programs

  • Maple
    # Variant, computes abs(T(n, k)):
    P := n -> n!*coeff(series((sec(y) + tan(y))/exp(x*y), y, 24), y, n):
    seq(print(seq((-1)^(n - k)*coeff(P(n), x, n - k), k = 0..n)), n = 0..9);
  • Python
    from functools import cache
    @cache
    def T(n: int, k: int) -> int:
        if k == 0: return 1
        if k == n:
            p = k % 2
            return p - sum(T(n, j) for j in range(p, n - 1, 2))
        return (T(n - 1, k) * n) // (n - k)
    for n in range(10): print([T(n, k) for k in range(n + 1)])

Formula

|T(n, k)| = (-1)^(n - k) * n! * [x^(n - k)][y^n] (sec(y) + tan(y)) / exp(x*y).
T(n, k) = [x^(n - k)] -2^(k-(0^k))*(Euler(k, 0) + Euler(k, 1/2)) / (x-1)^(k + 1).
For a recursion see the Python program.
T(n, k) = [x^n] ((-1) + Sum_{j=0..n} binomial(n, j)*(Euler(j, 1) + Euler(j, 1/2))*(2*x)^j). - Peter Luschny, Nov 17 2024

A001586 Generalized Euler numbers, or Springer numbers.

Original entry on oeis.org

1, 1, 3, 11, 57, 361, 2763, 24611, 250737, 2873041, 36581523, 512343611, 7828053417, 129570724921, 2309644635483, 44110959165011, 898621108880097, 19450718635716001, 445777636063460643, 10784052561125704811, 274613643571568682777, 7342627959965776406281
Offset: 0

Views

Author

Keywords

Comments

From Peter Bala, Feb 02 2011: (Start)
The Springer numbers were originally considered by Glaisher (see references). They are a type B analog of the zigzag numbers A000111 for the group of signed permutations.
COMBINATORIAL INTERPRETATIONS
Several combinatorial interpretations of the Springer numbers are known:
1) a(n) gives the number of Weyl chambers in the principal Springer cone of the Coxeter group B_n of symmetries of an n dimensional cube. An example can be found in [Arnold - The Calculus of snakes...].
2) Arnold found an alternative combinatorial interpretation of the Springer numbers in terms of snakes. Snakes are a generalization of alternating permutations to the group of signed permutations. A signed permutation is a sequence (x_1,x_2,...,x_n) of integers such that {|x_1|,|x_2|,...,|x_n|} = {1,2,...,n}. They form a group, the hyperoctahedral group of order 2^n*n! = A000165(n), isomorphic to the group of symmetries of the n dimensional cube. A snake of type B_n is a signed permutation (x_1,x_2,...,x_n) such that 0 < x_1 > x_2 < ... x_n. For example, (3,-4,-2,-5,1,-6) is a snake of type B_6. a(n) gives the number of snakes of type B_n [Arnold]. The cases n=2 and n=3 are given in the Example section below.
3) The Springer numbers also arise in the study of the critical points of functions; they count the topological types of odd functions with 2*n critical values [Arnold, Theorem 35].
4) Let F_n be the set of plane rooted forests satisfying the following conditions:
... each root has exactly one child, and each of the other internal nodes has exactly two (ordered) children,
... there are n nodes labeled by integers from 1 to n, but some leaves can be non-labeled (these are called empty leaves), and labels are increasing from each root down to the leaves. Then a(n) equals the cardinality of F_n. An example and proof are given in [Verges, Theorem 4.5].
OTHER APPEARANCES OF THE SPRINGER NUMBERS
1) Hoffman has given a connection between Springer numbers, snakes and the successive derivatives of the secant and tangent functions.
2) For integer N the quarter Gauss sums Q(N) are defined by ... Q(N) := Sum_{r = 0..floor(N/4)} exp(2*Pi*I*r^2/N). In the cases N = 1 (mod 4) and N = 3 (mod 4) an asymptotic series for Q(N) as N -> inf that involves the Springer numbers has been given by Evans et al., see 1.32 and 1.33.
For a sequence of polynomials related to the Springer numbers see A185417. For a table to recursively compute the Springer numbers see A185418.
(End)
Similar to the way in which the signed Euler numbers A122045 are 2^n times the value of the Euler polynomials at 1/2, the generalized signed Euler numbers A188458 can be seen as 2^n times the value of generalized Euler polynomials at 1/2. These are the Swiss-Knife polynomials A153641. A recursive definition of these polynomials is given in A081658. - Peter Luschny, Jul 19 2012
a(n) is the number of reverse-complementary updown permutations of [2n]. For example, the updown permutation 241635 is reverse-complementary because its complement is 536142, which is the same as its reverse, and a(2)=3 counts 1324, 2413, 3412. - David Callan, Nov 29 2012
a(n) = |2^n G(n,1/2;-1)|, a specialization of the Appell sequence of polynomials umbrally formed by G(n,x;t) = (G(.,0;t) + x)^n from the Grassmann polynomials G(n,0;t) of A046802 enumerating the cells of the positive Grassmannians. - Tom Copeland, Oct 14 2015
Named "Springer numbers" after the Dutch mathematician Tonny Albert Springer (1926-2011). - Amiram Eldar, Jun 13 2021

Examples

			a(2) = 3: The three snakes of type B_2 are
  (1,-2), (2,1), (2,-1).
a(3) = 11: The 11 snakes of type B_3 are
  (1,-2,3), (1,-3,2), (1,-3,-2),
  (2,1,3), (2,-1,3), (2,-3,1), (2,-3,-1),
  (3,1,2), (3,-1,2), (3,-2,1), (3,-2,-1).
		

References

  • V. I. Arnold, Springer numbers and Morsification spaces. J. Algebraic Geom., Vol. 1, No. 2 (1992), pp. 197-214.
  • J. W. L. Glaisher, "On the coefficients in the expansions of cos x/cos 2x and sin x/cos 2x", Quart. J. Pure and Applied Math., Vol. 45 (1914), pp. 187-222.
  • J. W. L. Glaisher, On the Bernoullian function, Q. J. Pure Appl. Math., Vol. 29 (1898), pp. 1-168.
  • Ulrike Sattler, Decidable classes of formal power series with nice closure properties, Diplomarbeit im Fach Informatik, Univ. Erlangen - Nürnberg, Jul 27 1994.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • Tonny Albert Springer, Remarks on a combinatorial problem, Nieuw Arch. Wisk., Vol. 19, No. 3 (1971), pp. 30-36.

Crossrefs

Row 2 of A349271.
Bisections are A000281 and A000464. Overview in A349264.
Related polynomials are given in A098432, A081658 and A153641.
Cf. A046802.

Programs

  • Maple
    a := proc(n) local k; (-1)^iquo(n,2)*add(2^k*binomial(n,k)*euler(k),k=0..n) end; # Peter Luschny, Jul 08 2009
    a := n -> (-1)^(n+iquo(n,2))*2^(3*n+1)*(Zeta(0,-n,1/8) - Zeta(0,-n,5/8)):
    seq(a(n),n=0..21); # Peter Luschny, Mar 11 2015
  • Mathematica
    n=21; CoefficientList[Series[1/(Cos[x]-Sin[x]), {x, 0, n}], x] * Table[k!, {k, 0, n}] (* Jean-François Alcover, May 18 2011 *)
    Table[Abs[Numerator[EulerE[n,1/4]]],{n,0,35}] (* Harvey P. Dale, May 18 2011 *)
  • PARI
    {a(n) = if(n<0, 0, n! * polcoeff( 1 / (cos(x + x * O(x^n)) - sin(x + x * O(x^n))), n))}; /* Michael Somos, Feb 03 2004 */
    
  • PARI
    {a(n) = my(an); if(n<2, n>=0, an = vector(n+1, m, 1); for(m=2, n, an[m+1] = 2*an[m] + an[m-1] + sum(k=0, m-3, binomial(m-2, k) * (an[k+1] * an[m-1-k] + 2*an[k+2] * an[m-k] - an[k+3] * an[m-1-k]))); an[n+1])}; /* Michael Somos, Feb 03 2004 */
    
  • PARI
    /* Explicit formula by Peter Bala: */
    {a(n)=((1+I)/2)^n*sum(k=0,n,((1-I)/(1+I))^k*sum(j=0,k,(-1)^(k-j)*binomial(n+1,k-j)*(2*j+1)^n))}
    
  • Sage
    @CachedFunction
    def p(n,x) :
        if n == 0 : return 1
        w = -1 if n%2 == 0 else 0
        v =  1 if n%2 == 0 else -1
        return v*add(p(k,0)*binomial(n,k)*(x^(n-k)+w) for k in range(n)[::2])
    def A001586(n) : return abs(2^n*p(n, 1/2))
    [A001586(n) for n in (0..21)] # Peter Luschny, Jul 19 2012

Formula

E.g.f.: 1/(cos(x) - sin(x)).
Values at 1 of polynomials Q_n() defined in A104035. - N. J. A. Sloane, Nov 06 2009
a(n) = numerator of abs(Euler(n,1/4)). - N. J. A. Sloane, Nov 07 2009
Let B_n(x) = Sum_{k=0.. n*(n-1)/2} b(n,k)*x^k, where b(n,k) is number of n-node acyclic digraphs with k arcs, cf. A081064; then a(n) = |B_n(-2)|. - Vladeta Jovovic, Jan 25 2005
G.f. A(x) = y satisfies y'^2 = 2y^4 - y^2, y''y = y^2 + 2y'^2. - Michael Somos, Feb 03 2004
a(n) = (-1)^floor(n/2) Sum_{k=0..n} 2^k C(n,k) Euler(k). - Peter Luschny, Jul 08 2009
From Peter Bala, Feb 02 2011: (Start)
(1)... a(n) = ((1 + i)/2)^n*B(n,(1 - i)/(1 + i)), where i = sqrt(-1) and {B(n,x)}n>=0 = [1, 1 + x, 1 + 6*x + x^2, 1 + 23*x + 23*x^2 + x^3, ...] is the sequence of type B Eulerian polynomials - see A060187.
This yields the explicit formula
(2)... a(n) = ((1 + i)/2)^n*Sum_{k = 0..n} ((1 - i)/(1 + i))^k * Sum_{j = 0..k} (-1)^(k-j)*binomial(n+1,k-j)*(2*j + 1)^n.
The result (2) can be used to find congruences satisfied by the Springer numbers. For example, for odd prime p
(3)
... a(p) = 1 (mod p) when p = 4*n + 1
... a(p) = -1 (mod p) when p = 4*n + 3.
(End)
E.g.f.: 1/Q(0) where Q(k) = 1 - x/((2k+1)-x*(2k+1)/(x+(2k+2)/Q(k+1))); (continued fraction). - Sergei N. Gladkovskii, Nov 19 2011
E.g.f.: 2/U(0) where U(k) = 1 + 1/(1 + x/(2*k + 1 -x - (2*k+1)/(2 - x/(x+ (2*k+2)/U(k+1))))); (continued fraction, 5-step). - Sergei N. Gladkovskii, Sep 24 2012
E.g.f.: 1/G(0) where G(k) = 1 - x/(4*k+1 - x*(4*k+1)/(4*k+2 + x + x*(4*k+2)/(4*k+3 - x - x*(4*k+3)/(x + (4*k+4)/G(k+1) )))); (continued fraction, 3rd kind, 5-step). - Sergei N. Gladkovskii, Oct 02 2012
G.f.: 1/G(0) where G(k) = 1 - x*(2*k+1) - 2*x^2*(k+1)*(k+1)/G(k+1); (continued fraction). - Sergei N. Gladkovskii, Jan 11 2013
a(n) = | 2*4^n*lerchphi(-1, -n, 1/4) |. - Peter Luschny, Apr 27 2013
a(n) ~ 4 * n^(n+1/2) * (4/Pi)^n / (sqrt(Pi)*exp(n)). - Vaclav Kotesovec, Oct 07 2013
G.f.: T(0)/(1-x), where T(k) = 1 - 2*x^2*(k+1)^2/( 2*x^2*(k+1)^2 - (1-x-2*x*k)*(1-3*x-2*x*k)/T(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Oct 15 2013
a(n) = (-1)^C(n+1,2)*2^(3*n+1)*(Zeta(-n,1/8)-Zeta(-n,5/8)), where Zeta(a,z) is the generalized Riemann zeta function. - Peter Luschny, Mar 11 2015
E.g.f. A(x) satisfies: A(x) = exp( Integral A(x)/A(-x) dx ). - Paul D. Hanna, Feb 04 2017
E.g.f. A(x) satisfies: A'(x) = A(x)^2/A(-x). - Paul D. Hanna, Feb 04 2017

Extensions

More terms from Vladeta Jovovic, Jan 25 2005

A155585 a(n) = 2^n*E(n, 1) where E(n, x) are the Euler polynomials.

Original entry on oeis.org

1, 1, 0, -2, 0, 16, 0, -272, 0, 7936, 0, -353792, 0, 22368256, 0, -1903757312, 0, 209865342976, 0, -29088885112832, 0, 4951498053124096, 0, -1015423886506852352, 0, 246921480190207983616, 0, -70251601603943959887872, 0, 23119184187809597841473536, 0
Offset: 0

Views

Author

Paul D. Hanna, Jan 24 2009

Keywords

Comments

Previous name was: a(n) = Sum_{k=0..n-1} (-1)^(k)*C(n-1,k)*a(n-1-k)*a(k) for n>0 with a(0)=1.
Factorials have a similar recurrence: f(n) = Sum_{k=0..n-1} C(n-1,k)*f(n-1-k)*f(k), n > 0.
Related to A102573: letting T(q,r) be the coefficient of n^(r+1) in the polynomial 2^(q-n)/n times Sum_{k=0..n} binomial(n,k)*k^q, then A155585(x) = Sum_{k=0..x-1} T(x,k)*(-1)^k. See Mathematica code below. - John M. Campbell, Nov 16 2011
For the difference table and the relation to the Seidel triangle see A239005. - Paul Curtz, Mar 06 2014
From Tom Copeland, Sep 29 2015: (Start)
Let z(t) = 2/(e^(2t)+1) = 1 + tanh(-t) = e.g.f.(-t) for this sequence = 1 - t + 2*t^3/3! - 16*t^5/5! + ... .
dlog(z(t))/dt = -z(-t), so the raising operators that generate Appell polynomials associated with this sequence, A081733, and its reciprocal, A119468, contain z(-d/dx) = e.g.f.(d/dx) as the differential operator component.
dz(t)/dt = z*(z-2), so the assorted relations to a Ricatti equation, the Eulerian numbers A008292, and the Bernoulli numbers in the Rzadkowski link hold.
From Michael Somos's formula below (drawing on the Edwards link), y(t,1)=1 and x(t,1) = (1-e^(2t))/(1+e^(2t)), giving z(t) = 1 + x(t,1). Compare this to the formulas in my list in A008292 (Sep 14 2014) with a=1 and b=-1,
A) A(t,1,-1) = A(t) = -x(t,1) = (e^(2t)-1)/(1+e^(2t)) = tanh(t) = t + -2*t^3/3! + 16*t^5/5! + -272*t^7/7! + ... = e.g.f.(t) - 1 (see A000182 and A000111)
B) Ainv(t) = log((1+t)/(1-t))/2 = tanh^(-1)(t) = t + t^3/3 + t^5/5 + ..., the compositional inverse of A(t)
C) dA/dt = (1-A^2), relating A(t) to a Weierstrass elliptic function
D) ((1-t^2)d/dt)^n t evaluated at t=0, a generator for the sequence A(t)
F) FGL(x,y)= (x+y)/(1+xy) = A(Ainv(x) + Ainv(y)), a related formal group law corresponding to the Lorentz FGL (Lorentz transformation--addition of parallel velocities in special relativity) and the Atiyah-Singer signature and the elliptic curve (1-t^2)*s = t^3 in Tate coordinates according to the Lenart and Zainoulline link and the Buchstaber and Bunkova link (pp. 35-37) in A008292.
A133437 maps the reciprocal odd natural numbers through the refined faces of associahedra to a(n).
A145271 links the differential relations to the geometry of flow maps, vector fields, and thereby formal group laws. See Mathworld for links of tanh to other geometries and statistics.
Since the a(n) are related to normalized values of the Bernoulli numbers and the Riemann zeta and Dirichlet eta functions, there are links to Witten's work on volumes of manifolds in two-dimensional quantum gauge theories and the Kervaire-Milnor formula for homotopy groups of hyperspheres (see my link below).
See A101343, A111593 and A059419 for this and the related generator (1 + t^2) d/dt and associated polynomials. (End)
With the exception of the first term (1), entries are the alternating sums of the rows of the Eulerian triangle, A008292. - Gregory Gerard Wojnar, Sep 29 2018

Examples

			E.g.f.: 1 + x - 2*x^3/3! + 16*x^5/5! - 272*x^7/7! + 7936*x^9/9! -+ ... = exp(x)/cosh(x).
O.g.f.: 1 + x - 2*x^3 + 16*x^5 - 272*x^7 + 7936*x^9 - 353792*x^11 +- ...
O.g.f.: 1 + x/(1+2*x) + 2!*x^2/((1+2*x)*(1+4*x)) + 3!*x^3/((1+2*x)*(1+4*x)*(1+6*x)) + ...
		

Crossrefs

Equals row sums of A119879. - Johannes W. Meijer, Apr 20 2011
(-1)^n*a(n) are the alternating row sums of A123125. - Wolfdieter Lang, Jul 12 2017

Programs

  • Maple
    A155585 := n -> 2^n*euler(n, 1): # Peter Luschny, Jan 26 2009
    a := proc(n) option remember; `if`(n::even, 0^n, -(-1)^n - add((-1)^k*binomial(n,k) *a(n-k), k = 1..n-1)) end: # Peter Luschny, Jun 01 2016
    # Or via the recurrence of the Fubini polynomials:
    F := proc(n) option remember; if n = 0 then return 1 fi;
    expand(add(binomial(n, k)*F(n-k)*x, k = 1..n)) end:
    a := n -> (-2)^n*subs(x = -1/2, F(n)):
    seq(a(n), n = 0..30); # Peter Luschny, May 21 2021
  • Mathematica
    a[m_] := Sum[(-2)^(m - k) k! StirlingS2[m, k], {k, 0, m}] (* Peter Luschny, Apr 29 2009 *)
    poly[q_] :=  2^(q-n)/n*FunctionExpand[Sum[Binomial[n, k]*k^q, {k, 0, n}]]; T[q_, r_] :=  First[Take[CoefficientList[poly[q], n], {r+1, r+1}]]; Table[Sum[T[x, k]*(-1)^k, {k, 0, x-1}], {x, 1, 16}] (* John M. Campbell, Nov 16 2011 *)
    f[n_] := (-1)^n 2^(n+1) PolyLog[-n, -1]; f[0] = -f[0]; Array[f, 27, 0] (* Robert G. Wilson v, Jun 28 2012 *)
  • PARI
    a(n)=if(n==0,1,sum(k=0,n-1,(-1)^(k)*binomial(n-1,k)*a(n-1-k)*a(k)))
    
  • PARI
    a(n)=local(X=x+x*O(x^n));n!*polcoeff(exp(X)/cosh(X),n)
    
  • PARI
    a(n)=polcoeff(sum(m=0,n,m!*x^m/prod(k=1,m,1+2*k*x+x*O(x^n))),n) \\ Paul D. Hanna, Jul 20 2011
    
  • PARI
    {a(n) = local(A); if( n<0, 0, A = x * O(x^n); n! * polcoeff( 1 + sinh(x + A) / cosh(x + A), n))} /* Michael Somos, Jan 16 2012 */
    
  • PARI
    a(n)=local(A=1+x);for(i=1,n,A=sum(k=0,n,intformal(subst(A,x,-x)+x*O(x^n))^k/k!));n!*polcoeff(A,n)
    for(n=0,30,print1(a(n),", ")) \\ Paul D. Hanna, Nov 25 2013
    
  • Python
    from sympy import bernoulli
    def A155585(n): return (((2<<(m:=n+1))-2)*bernoulli(m)<>1) if n&1 else (0 if n else 1) # Chai Wah Wu, Apr 14 2023
  • Sage
    def A155585(n) :
        if n == 0 : return 1
        return add(add((-1)^(j+1)*binomial(n+1,k-j)*j^n for j in (0..k)) for k in (1..n))
    [A155585(n) for n in (0..26)] # Peter Luschny, Jul 23 2012
    
  • Sage
    def A155585_list(n): # Akiyama-Tanigawa algorithm
        A = [0]*(n+1); R = []
        for m in range(n+1) :
            d = divmod(m+3, 4)
            A[m] = 0 if d[1] == 0 else (-1)^d[0]/2^(m//2)
            for j in range(m, 0, -1) :
                A[j - 1] = j * (A[j - 1] - A[j])
            R.append(A[0])
        return R
    A155585_list(30) # Peter Luschny, Mar 09 2014
    

Formula

E.g.f.: exp(x)*sech(x) = exp(x)/cosh(x). (See A009006.) - Paul Barry, Mar 15 2006
Sequence of absolute values is A009006 (e.g.f. 1+tan(x)).
O.g.f.: Sum_{n>=0} n! * x^n / Product_{k=1..n} (1 + 2*k*x). - Paul D. Hanna, Jul 20 2011
a(n) = 2^n*E_{n}(1) where E_{n}(x) are the Euler polynomials. - Peter Luschny, Jan 26 2009
a(n) = EL_{n}(-1) where EL_{n}(x) are the Eulerian polynomials. - Peter Luschny, Aug 03 2010
a(n+1) = (4^n-2^n)*B_n(1)/n, where B_{n}(x) are the Bernoulli polynomials (B_n(1) = B_n for n <> 1). - Peter Luschny, Apr 22 2009
G.f.: 1/(1-x+x^2/(1-x+4*x^2/(1-x+9*x^2/(1-x+16*x^2/(1-...))))) (continued fraction). - Paul Barry, Mar 30 2010
G.f.: -log(x/(exp(x)-1))/x = Sum_{n>=0} a(n)*x^n/(2^(n+1)*(2^(n+1)-1)*n!). - Vladimir Kruchinin, Nov 05 2011
E.g.f.: exp(x)/cosh(x) = 2/(1+exp(-2*x)) = 2/(G(0) + 1); G(k) = 1 - 2*x/(2*k + 1 - x*(2*k+1)/(x - (k+1)/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Dec 10 2011
E.g.f. is x(t,1) + y(t,1) where x(t,a) and y(t,a) satisfy y(t,a)^2 = (a^2 - x(t,a)^2) / (1 - a^2 * x(t,a)^2) and dx(t,a) / dt = y(t,a) * (1 - a * x(t,a)^2) and are the elliptic functions of Edwards. - Michael Somos, Jan 16 2012
E.g.f.: 1/(1 - x/(1+x/(1 - x/(3+x/(1 - x/(5+x/(1 - x/(7+x/(1 - x/(9+x/(1 +...))))))))))), a continued fraction. - Paul D. Hanna, Feb 11 2012
E.g.f. satisfies: A(x) = Sum_{n>=0} Integral( A(-x) dx )^n / n!. - Paul D. Hanna, Nov 25 2013
a(n) = -2^(n+1)*Li_{-n}(-1). - Peter Luschny, Jun 28 2012
a(n) = Sum_{k=1..n} Sum_{j=0..k} (-1)^(j+1)*binomial(n+1,k-j)*j^n for n > 0. - Peter Luschny, Jul 23 2012
From Sergei N. Gladkovskii, Oct 25 2012 to Dec 16 2013: (Start)
Continued fractions:
G.f.: 1 + x/T(0) where T(k) = 1 + (k+1)*(k+2)*x^2/T(k+1).
E.g.f.: exp(x)/cosh(x) = 1 + x/S(0) where S(k) = (2*k+1) + x^2/S(k+1).
E.g.f.: 1 + x/(U(0)+x) where U(k) = 4*k+1 - x/(1 + x/(4*k+3 - x/(1 + x/U(k+1)))).
E.g.f.: 1 + tanh(x) = 4*x/(G(0)+2*x) where G(k) = 1 - (k+1)/(1 - 2*x/(2*x + (k+1)^2/G(k+1)));
G.f.: 1 + x/G(0) where G(k) = 1 + 2*x^2*(2*k+1)^2 - x^4*(2*k+1)*(2*k+2)^2*(2*k+3)/G(k+1) (due to Stieltjes).
E.g.f.: 1 + x/(G(0) + x) where G(k) = 1 - 2*x/(1 + (k+1)/G(k+1)).
G.f.: 2 - 1/Q(0) where Q(k) = 1 + x*(k+1)/( 1 - x*(k+1)/Q(k+1)).
G.f.: 2 - 1/Q(0) where Q(k) = 1 + x*k^2 + x/(1 - x*(k+1)^2/Q(k+1)).
G.f.: 1/Q(0) where Q(k) = 1 - 2*x + x*(k+1)/(1-x*(k+1)/Q(k+1)).
G.f.: 1/Q(0) where Q(k) = 1 - x*(k+1)/(1 + x*(k+1)/Q(k+1)).
E.g.f.: 1 + x*Q(0) where Q(k) = 1 - x^2/( x^2 + (2*k+1)*(2*k+3)/Q(k+1)).
G.f.: 2 - T(0)/(1+x) where T(k) = 1 - x^2*(k+1)^2/(x^2*(k+1)^2 + (1+x)^2/T(k+1)).
E.g.f.: 1/(x - Q(0)) where Q(k) = 4*k^2 - 1 + 2*x + x^2*(2*k-1)*(2*k+3)/Q(k+1). (End)
G.f.: 1 / (1 - b(1)*x / (1 - b(2)*x / (1 - b(3)*x / ... ))) where b = A001057. - Michael Somos, Jan 03 2013
From Paul Curtz, Mar 06 2014: (Start)
a(2n) = A000007(n).
a(2n+1) = (-1)^n*A000182(n+1).
a(n) is the binomial transform of A122045(n).
a(n) is the row sum of A081658. For fractional Euler numbers see A238800.
a(n) + A122045(n) = 2, 1, -1, -2, 5, 16, ... = -A163982(n).
a(n) - A122045(n) = -A163747(n).
a(n) is the Akiyama-Tanigawa transform applied to 1, 0, -1/2, -1/2, -1/4, 0, ... = A046978(n+3)/A016116(n). (End)
a(n) = 2^(2*n+1)*(zeta(-n,1/2) - zeta(-n, 1)), where zeta(a, z) is the generalized Riemann zeta function. - Peter Luschny, Mar 11 2015
a(n) = 2^(n + 1)*(2^(n + 1) - 1)*Bernoulli(n + 1, 1)/(n + 1). (From Bill Gosper, Oct 28 2015) - N. J. A. Sloane, Oct 28 2015 [See the above comment from Peter Luschny, Apr 22 2009.]
a(n) = -(n mod 2)*((-1)^n + Sum_{k=1..n-1} (-1)^k*C(n,k)*a(n-k)) for n >= 1. - Peter Luschny, Jun 01 2016
a(n) = (-2)^n*F_{n}(-1/2), where F_{n}(x) is the Fubini polynomial. - Peter Luschny, May 21 2021

Extensions

New name from Peter Luschny, Mar 12 2015

A119879 Exponential Riordan array (sech(x),x).

Original entry on oeis.org

1, 0, 1, -1, 0, 1, 0, -3, 0, 1, 5, 0, -6, 0, 1, 0, 25, 0, -10, 0, 1, -61, 0, 75, 0, -15, 0, 1, 0, -427, 0, 175, 0, -21, 0, 1, 1385, 0, -1708, 0, 350, 0, -28, 0, 1, 0, 12465, 0, -5124, 0, 630, 0, -36, 0, 1, -50521, 0, 62325, 0, -12810, 0, 1050, 0, -45, 0, 1
Offset: 0

Views

Author

Paul Barry, May 26 2006

Keywords

Comments

Row sums have e.g.f. exp(x)*sech(x) (signed version of A009006). Inverse of masked Pascal triangle A119467. Transforms the sequence with e.g.f. g(x) to the sequence with e.g.f. g(x)*sech(x).
Coefficients of the Swiss-Knife polynomials for the computation of Euler, tangent and Bernoulli number (triangle read by rows). Another version in A153641. - Philippe Deléham, Oct 26 2013
Relations to Green functions and raising/creation and lowering/annihilation/destruction operators are presented in Hodges and Sukumar and in Copeland's discussion of this sequence and 2020 pdf. - Tom Copeland, Jul 24 2020

Examples

			Triangle begins:
     1;
     0,    1;
    -1,    0,     1;
     0,   -3,     0,   1;
     5,    0,    -6,   0,   1;
     0,   25,     0, -10,   0,   1;
   -61,    0,    75,   0, -15,   0,   1;
     0, -427,     0, 175,   0, -21,   0,  1;
  1385,    0, -1708,   0, 350,   0, -28,  0,  1;
		

Crossrefs

Row sums are A155585. - Johannes W. Meijer, Apr 20 2011
Rows reversed: A081658.

Programs

  • Maple
    T := (n,k) -> binomial(n,k)*2^(n-k)*euler(n-k,1/2): # Peter Luschny, Jan 25 2009
  • Mathematica
    T[n_, k_] := Binomial[n, k] 2^(n-k) EulerE[n-k, 1/2];
    Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jun 20 2018, after Peter Luschny *)
  • PARI
    {T(n,k) = binomial(n,k)*2^(n-k)*(2/(n-k+1))*(subst(bernpol(n-k+1, x), x, 1/2) - 2^(n-k+1)*subst(bernpol(n-k+1, x), x, 1/4))};
    for(n=0,5, for(k=0,n, print1(T(n,k), ", "))) \\ G. C. Greubel, Feb 25 2019
  • Sage
    @CachedFunction
    def A119879_poly(n, x) :
        return 1 if n == 0  else add(A119879_poly(k, 0)*binomial(n, k)*(x^(n-k)-1+n%2) for k in range(n)[::2])
    def A119879_row(n) :
        R = PolynomialRing(ZZ, 'x')
        return R(A119879_poly(n,x)).coeffs()  # Peter Luschny, Jul 16 2012
    # Alternatively:
    
  • Sage
    # uses[riordan_array from A256893]
    riordan_array(sech(x), x, 9, exp=true) # Peter Luschny, Apr 19 2015
    

Formula

Number triangle whose k-th column has e.g.f. sech(x)*x^k/k!.
T(n,k) = C(n,k)*2^(n-k)*E_{n-k}(1/2) where C(n,k) is the binomial coefficient and E_{m}(x) are the Euler polynomials. - Peter Luschny, Jan 25 2009
The coefficients in ascending order of x^i of the polynomials p{0}(x) = 1 and p{n}(x) = Sum_{k=0..n-1; k even} binomial(n,k)*p{k}(0)*((n mod 2) - 1 + x^(n-k)). - Peter Luschny, Jul 16 2012
E.g.f.: exp(x*z)/cosh(x). - Peter Luschny, Aug 01 2012
Sum_{k=0..n} T(n,k)*x^k = A122045(n), A155585(n), A119880(n), A119881(n) for x = 0, 1, 2, 3 respectively. - Philippe Deléham, Oct 27 2013
With all offsets 0, let A_n(x;y) = (y + E.(x))^n, an Appell sequence in y where E.(x)^k = E_k(x) are the Eulerian polynomials of A123125. Then the row polynomials of A046802 (the h-polynomials of the stellahedra) are given by h_n(x) = A_n(x;1); the row polynomials of A248727 (the face polynomials of the stellahedra), by f_n(x) = A_n(1 + x;1); the Swiss-knife polynomials of this entry, A119879, by Sw_n(x) = A_n(-1;1 + x); and the row polynomials of the Worpitsky triangle (A130850), by w_n(x) = A(1 + x;0). Other specializations of A_n(x;y) give A090582 (the f-polynomials of the permutohedra, cf. also A019538) and A028246 (another version of the Worpitsky triangle). - Tom Copeland, Jan 24 2020
Triangle equals P*((I + P^2)/2)^(-1), where P denotes Pascal's triangle A007318. - Peter Bala, Mar 07 2024

A046739 Triangle read by rows, related to number of permutations of [n] with 0 successions and k rises.

Original entry on oeis.org

0, 1, 1, 1, 1, 7, 1, 1, 21, 21, 1, 1, 51, 161, 51, 1, 1, 113, 813, 813, 113, 1, 1, 239, 3361, 7631, 3361, 239, 1, 1, 493, 12421, 53833, 53833, 12421, 493, 1, 1, 1003, 42865, 320107, 607009, 320107, 42865, 1003, 1, 1, 2025, 141549, 1704693, 5494017
Offset: 1

Views

Author

Keywords

Comments

From Emeric Deutsch, May 25 2009: (Start)
T(n,k) is the number of derangements of [n] having k excedances. Example: T(4,2)=7 because we have 3*14*2, 3*4*12, 4*3*12, 2*14*3, 2*4*13, 3*4*21, 4*3*21, each with two excedances (marked). An excedance of a permutation p is a position i such that p(i) > i.
Sum_{k>=1} k*T(n,k) = A000274(n+1). (End)
The triangle 1;1,1;1,7,1;... has general term T(n,k) = Sum_{j=0..n+2} (-1)^(n-j)*C(n+2,j)*A123125(j,k+2) and bivariate g.f. ((1-y)*(y*exp(2*x*y) + exp(x*(y+1))(y^2 - 4*y + 1) + y*exp(2*x)))/(exp(x*y) - y*exp(x))^3. - Paul Barry, May 10 2011
The n-th row is the local h-vector of the barycentric subdivision of a simplex, i.e., the Coxeter complex of type A. See Proposition 2.4 of Stanley's paper below. - Kyle Petersen, Aug 20 2012
T(n,k) is the k-th coefficient of the local h^*-polynomial, or box polynomial, of the s-lecture hall n-simplex with s=(2,3,...,n+1). See Theorem 4.1 of the paper by N. Gustafsson and L. Solus below. - Liam Solus, Aug 23 2018

Examples

			Triangle starts:
  0;
  1;
  1,   1;
  1,   7,   1;
  1,  21,  21,   1;
  1,  51, 161,  51,   1;
  1, 113, 813, 813, 113, 1;
  ...
From _Peter Luschny_, Sep 17 2021: (Start)
The triangle shows the coefficients of the following bivariate polynomials:
  [1] 0;
  [2] x*y;
  [3] x^2*y +     x*y^2;
  [4] x^3*y +   7*x^2*y^2 +     x*y^3;
  [5] x^4*y +  21*x^3*y^2 +  21*x^2*y^3 +     x*y^4;
  [6] x^5*y +  51*x^4*y^2 + 161*x^3*y^3 +  51*x^2*y^4 +     x*y^5;
  [7] x^6*y + 113*x^5*y^2 + 813*x^4*y^3 + 813*x^3*y^4 + 113*x^2*y^5 + x*y^6;
  ...
These polynomials are the permanents of the n X n matrices with all entries above the main antidiagonal set to 'x' and all entries below the main antidiagonal set to 'y'. The main antidiagonals consist only of zeros. Substituting x <- 1 and y <- -1 generates the Euler secant numbers A122045. (Compare with A081658.)
(End)
		

Crossrefs

Cf. A046740.
Row sums give A000166.
Diagonals give A070313, A070315.
T(2n,n) gives A320337.

Programs

  • Maple
    G := (1-t)*exp(-t*z)/(1-t*exp((1-t)*z)): Gser := simplify(series(G, z = 0, 15)): for n to 13 do P[n] := sort(expand(factorial(n)*coeff(Gser, z, n))) end do: 0; for n to 11 do seq(coeff(P[n], t, j), j = 1 .. n-1) end do; # yields sequence in triangular form # Emeric Deutsch, May 25 2009
  • Mathematica
    max = 12; f[t_, z_] := (1-t)*(Exp[-t*z]/(1 - t*Exp[(1-t)*z])); se = Series[f[t, z], {t, 0, max}, {z, 0, max}];
    coes = Transpose[ #*Range[0, max]! & /@ CoefficientList[se, {t, z}]]; Join[{0}, Flatten[ Table[ coes[[n, k]], {n, 2, max}, {k, 2, n-1}]]] (* Jean-François Alcover, Oct 24 2011, after g.f. *)
    E1[n_ /; n >= 0, 0] = 1; (* E1(n,k) are the Eulerian numbers *)
    E1[n_, k_] /; k < 0 || k > n = 0;
    E1[n_, k_] := E1[n, k] = (n-k) E1[n-1, k-1] + (k+1) E1[n-1, k];
    T[n_, k_] := Sum[Binomial[-j-1, -n-1] E1[j, k], {j, 0, n}];
    Table[T[n, k], {n, 1, 100}, {k, 1, n-1}] /. {} -> {0} // Flatten (* Jean-François Alcover, Oct 31 2020, after Peter Luschny in A271697 *)
    Table[Expand[n!Factor[SeriesCoefficient[(x-y)/(x Exp[y t]-y Exp[x t]),{t,0,n}]]],{n,0,12}]//TableForm (* Mamuka Jibladze, Nov 26 2024 *)
  • PARI
    T(n)={my(x='x+O('x^(n+1))); concat([[0]], [Vecrev(p/y) | p<-Vec(-1+serlaplace((y-1)/(y*exp(x)-exp(x*y))))])}
    { my(A=T(10));for(i=1,#A,print(A[i])) } \\ Andrew Howroyd, Nov 13 2024

Formula

a(n+1, r) = r*a(n, r) + (n+1-r)*a(n, r-1) + n*a(n-1, r-1).
exp(-t)/(1 - exp((x-1)t)/(x-1)) = 1 + x*t^2/2! + (x+x^2)*t^3/3! + (x+7x^2+x^3)*t^4/4! + (x+21x^2+21x^3+x^4)*t^5/5! + ... - Philippe Deléham, Jun 11 2004
E.g.f.: (y-1)/(y*exp(x) - exp(x*y)). - Mamuka Jibladze, Nov 08 2024

Extensions

More terms from Larry Reeves (larryr(AT)acm.org), Apr 07 2000

A363393 Triangle read by rows. T(n, k) = [x^k] (2 - Sum_{k=0..n} binomial(n, k)*Euler(k, 1)*(-2*x)^k).

Original entry on oeis.org

1, 1, 1, 1, 2, 0, 1, 3, 0, -2, 1, 4, 0, -8, 0, 1, 5, 0, -20, 0, 16, 1, 6, 0, -40, 0, 96, 0, 1, 7, 0, -70, 0, 336, 0, -272, 1, 8, 0, -112, 0, 896, 0, -2176, 0, 1, 9, 0, -168, 0, 2016, 0, -9792, 0, 7936, 1, 10, 0, -240, 0, 4032, 0, -32640, 0, 79360, 0
Offset: 0

Views

Author

Peter Luschny, Jun 04 2023

Keywords

Comments

The Swiss-Knife polynomials (A081658 and A153641) generate the dual triangle ('dual' in the sense of Euler-tangent versus Euler-secant numbers).

Examples

			The triangle T(n, k) starts:
[0] 1;
[1] 1, 1;
[2] 1, 2, 0;
[3] 1, 3, 0,   -2;
[4] 1, 4, 0,   -8, 0;
[5] 1, 5, 0,  -20, 0,   16;
[6] 1, 6, 0,  -40, 0,   96, 0;
[7] 1, 7, 0,  -70, 0,  336, 0,  -272;
[8] 1, 8, 0, -112, 0,  896, 0, -2176, 0;
[9] 1, 9, 0, -168, 0, 2016, 0, -9792, 0, 7936;
		

Crossrefs

Cf. A122045 (alternating row sums), A119880 (row sums), A214447 (central column), A155585 (main diagonal), A109573 (subdiagonal), A162660 (variant), A000364.

Programs

  • Maple
    P := n -> add(binomial(n + 1, j)*bernoulli(j, 1)*(4^j - 2^j)*x^(j-1), j = 0..n+1) / (n + 1):  T := (n, k) -> coeff(P(n), x, k):
    seq(seq(T(n, k), k = 0..n), n = 0..9);
    # Second program, based on the generating functions of the columns:
    ogf := n -> -(-2)^n * euler(n, 1) / (x - 1)^(n + 1):
    ser := n -> series(ogf(n), x, 16):
    T := (n, k) -> coeff(ser(k), x, n - k):
    for n from 0 to 9 do seq(T(n, k), k = 0..n) od;
    # Alternative, based on the bivariate generating function:
    egf :=  exp(x*y) * (1 + tanh(y)): ord := 20:
    sery := series(egf, y, ord): polx := n -> coeff(sery, y, n):
    coefx := n -> seq(n! * coeff(polx(n), x, n - k), k = 0..n):
    for n from 0 to 9 do coefx(n) od;
  • Python
    from functools import cache
    @cache
    def T(n: int, k: int) -> int:
        if k == 0: return 1
        if k % 2 == 0:  return 0
        if k == n: return 1 - sum(T(n, j) for j in range(1, n, 2))
        return (T(n - 1, k) * n) // (n - k)
    for n in range(10): print([T(n, k) for k in range(n + 1)])
  • SageMath
    def B(n: int):
        return bernoulli_polynomial(1, n)
    def P(n: int):
        return sum(binomial(n + 1, j) * B(j) * (4^j - 2^j) * x^(j - 1)
               for j in range(n + 2)) / (n + 1)
    for n in range(10): print(P(n).list())
    

Formula

For a recursion see the Python program.
T(n, k) = [x^k] P(n, x) where P(n, x) = (1 / (n + 1)) * Sum_{j=0..n+1} binomial(n + 1, j) * Bernoulli(j, 1) * (4^j - 2^j) * x^(j - 1).
Integral_{x=-n..n} P(n, x)/2 dx = n.
T(n, k) = [x^(n - k)] -(-2)^k * Euler(k, 1) / (x - 1)^(k + 1).
T(n, k) = n! * [x^(n - k)][y^n] exp(x*y) * (1 + tanh(y)).

Extensions

Simpler name by Peter Luschny, Nov 17 2024

A371637 Triangle read by rows: T(n, k) = (-8)^k*binomial(2*n, 2*k)*Euler(2*k, 1/2).

Original entry on oeis.org

1, 1, 2, 1, 12, 20, 1, 30, 300, 488, 1, 56, 1400, 13664, 22160, 1, 90, 4200, 102480, 997200, 1616672, 1, 132, 9900, 450912, 10969200, 106700352, 172976960, 1, 182, 20020, 1465464, 66546480, 1618288672, 15740903360, 25518205568
Offset: 0

Views

Author

Peter Luschny, Apr 02 2024

Keywords

Examples

			Triangle starts:
[0] 1;
[1] 1,   2;
[2] 1,  12,    20;
[3] 1,  30,   300,     488;
[4] 1,  56,  1400,   13664,    22160;
[5] 1,  90,  4200,  102480,   997200,    1616672;
[6] 1, 132,  9900,  450912, 10969200,  106700352,   172976960;
[7] 1, 182, 20020, 1465464, 66546480, 1618288672, 15740903360, 25518205568;
		

Crossrefs

Cf. A001105, A002939 (column 1), A012816 (main diagonal), A371683 (row sums), A371684 (alternating row sums).

Programs

  • Maple
    T := (n, k) -> (-8)^k*binomial(2*n, 2*k)*euler(2*k, 1/2):
    seq(print(seq(T(n, k), k = 0..n)), n = 0..7);
  • Mathematica
    Table[(-8)^k*Binomial[2*n, 2*k]*EulerE[2*k, 1/2], {n, 0, 10}, {k, 0, n}] (* Paolo Xausa, Apr 17 2024 *)
  • SageMath
    def DelehamDelta(R, S, dim):
        ring = PolynomialRing(ZZ, 'x')
        x = ring.gen()
        A = [R(k) + x * S(k) for k in range(dim)]
        C = [ring(0)] + [ring(1) for i in range(dim)]
        for k in range(1, dim + 1):
            for n in range(k - 1, 0, -1):
                C[n] = C[n-1] + C[n+1] * A[n-1]
            yield list(C[1])
    def A371637_triangle(dim):
        a = lambda n: 1 - n % 2
        b = lambda n: 2*(n + 1)^2
        for row in DelehamDelta(a, b, dim): print(row)
    A371637_triangle(8)  # Peter Luschny, Apr 21 2024

Formula

Triangle T(n, k), 0 <= k <=n, read by rows, given by [1, 0, 1, 0, 1, 0, 1, 0, 1, ...] DELTA [2, 8, 18, 32, 50, 72, 98, ...] where DELTA is the operator defined in A084938. - Philippe Deléham, Apr 21 2024
T(n, k) = binomial(2*n, 2*k) * 2^k * abs(Euler(2*k)) = A086645(n, k) * A000079(k) * A000364(k). - Philippe Deléham, Apr 23 2024

A378066 Array read by ascending antidiagonals: A(n, k) = (-2*n)^k * Euler(k, (n - 1)/(2*n)) for n >= 1 and A(0, k) = 1.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, -3, -2, 1, 1, 1, -8, -11, 0, 1, 1, 1, -15, -26, 57, 16, 1, 1, 1, -24, -47, 352, 361, 0, 1, 1, 1, -35, -74, 1185, 1936, -2763, -272, 1, 1, 1, -48, -107, 2976, 6241, -38528, -24611, 0, 1
Offset: 0

Views

Author

Peter Luschny, Nov 15 2024

Keywords

Comments

This is the counterpart of A377666, where A(1, n) are the secant numbers A122045(n). Here A(1, n) are the tangent numbers A155585(n).

Examples

			Array starts:
  [0]  1, 1,   1,    1,     1,     1,        1, ...  A000012
  [1]  1, 1,   0,   -2,     0,    16,        0, ...  A155585
  [2]  1, 1,  -3,  -11,    57,   361,    -2763, ...  A188458
  [3]  1, 1,  -8,  -26,   352,  1936,   -38528, ...  A000810
  [4]  1, 1, -15,  -47,  1185,  6241,  -230895, ...  A000813
  [5]  1, 1, -24,  -74,  2976, 15376,  -906624, ...  A378065
  [6]  1, 1, -35, -107,  6265, 32041, -2749355, ...
  [7]  1, 1, -48, -146, 11712, 59536, -6997248, ...
		

Crossrefs

Columns: A005563 (k=2), A080663 (k=3), A378064 (k=4).
Cf. A378063 (main diagonal), A377666 (secant), A081658 (column generating polynomials).

Programs

  • Maple
    A := (n, k) -> ifelse(n = 0, 1, (-2*n)^k * euler(k, (n - 1) / (2*n))):
    for n from 0 to 7 do seq(A(n, k), k = 0..9) od; # row by row
    # Alternative:
    A := proc(n, k) local j; add(binomial(k, j)*euler(j, 1/2)*(-2*n)^j, j = 0..k) end: seq(seq(A(n - k, k), k = 0..n), n = 0..10);
    # Using generating functions:
    egf := n -> exp(x)/cosh(n*x): ser := n -> series(egf(n), x, 14):
    row := n -> local k; seq(k!*coeff(ser(n), x, k), k = 0..7):
    seq(lprint(row(n)), n = 0..7);

Formula

A(n, k) = k! * [x^k] exp(x)/cosh(n*x).
A(n, k) = Sum_{j = 0..k} binomial(k, j) * Euler(j, 1/2) *(-2*n)^j.
Showing 1-8 of 8 results.