A371683
a(n) = Sum_{k=0..n} (-2)^(3*k)*binomial(2*n, 2*k)*Euler(2*k, 1/2). Row sums of A371637.
Original entry on oeis.org
1, 3, 33, 819, 37281, 2720643, 291107457, 42945429747, 8354465297601, 2072193715976067, 638269648981638753, 239021193599722872627, 106946291677392350660961, 56346809266835212819000323, 34528790475992735166895973313, 24349545528533035663737512791539
Offset: 0
-
seq(add((-8)^k*binomial(2*n, 2*k)*euler(2*k, 1/2), k = 0..n), n = 0..15);
-
Table[Sum[(-2)^(3*k)*Binomial[2*n,2*k]*EulerE[2*k,1/2],{k,0,n}],{n,0,15}] (* James C. McMahon, Apr 05 2024 *)
A371684
a(n) = Sum_{k=0..n} 2^(3*k)*binomial(2*n, 2*k)*Euler(2*k, 1/2). Alternating row sums of A371637.
Original entry on oeis.org
1, -1, 9, -217, 9841, -717841, 76804665, -11330490025, 2204195526241, -546715992537505, 168397490614671849, -63062013420332052985, 28216110792407667898321, -14866226664969958126495921, 9109882748673411939937074969, -6424247756451800785395922510537
Offset: 0
-
seq(add(2^(3*k)*binomial(2*n, 2*k)*euler(2*k, 1/2), k = 0..n), n = 0..15);
-
Table[Sum[2^(3*k)*Binomial[2*n, 2*k]*EulerE[2*k, 1/2], {k, 0, n}], {n, 0, 20}] (* Paolo Xausa, Apr 17 2024 *)
A372001
Array read by descending antidiagonals: A family of generalized Catalan numbers generated by a generalization of Deléham's Delta operator.
Original entry on oeis.org
1, 1, 1, 2, 1, 1, 5, 3, 1, 1, 14, 15, 5, 1, 1, 42, 105, 61, 9, 1, 1, 132, 945, 1385, 297, 17, 1, 1, 429, 10395, 50521, 24273, 1585, 33, 1, 1, 1430, 135135, 2702765, 3976209, 485729, 8865, 65, 1, 1, 4862, 2027025, 199360981, 1145032281, 372281761, 10401345, 50881, 129, 1, 1
Offset: 1
Array starts:
[0] 1, 1, 2, 5, 14, 42, 132, ...
[1] 1, 1, 3, 15, 105, 945, 10395, ...
[2] 1, 1, 5, 61, 1385, 50521, 2702765, ...
[3] 1, 1, 9, 297, 24273, 3976209, 1145032281, ...
[4] 1, 1, 17, 1585, 485729, 372281761, 601378506737, ...
[5] 1, 1, 33, 8865, 10401345, 38103228225, 352780110115425, ...
[6] 1, 1, 65, 50881, 231455105, 4104215813761, 220579355255364545, ...
.
Seen as a triangle T(n, k) = A(k, n - k):
[0] [ 1]
[1] [ 1, 1]
[2] [ 2, 1, 1]
[3] [ 5, 3, 1, 1]
[4] [ 14, 15, 5, 1, 1]
[5] [ 42, 105, 61, 9, 1, 1]
[6] [132, 945, 1385, 297, 17, 1, 1]
[7] [429, 10395, 50521, 24273, 1585, 33, 1, 1]
By ascending antidiagonals:
A290569.
-
def GeneralizedDelehamDelta(F, dim, seq=True): # The algorithm.
ring = PolynomialRing(ZZ, 'x')
x = ring.gen()
A = [sum(F[j](k) * x^j for j in range(len(F))) for k in range(dim)]
C = [ring(0)] + [ring(1) for i in range(dim)]
for k in range(dim):
for n in range(k, 0, -1):
C[n] = C[n-1] + C[n+1] * A[n-1]
yield list(C[1])[-1] if seq else list(C[1])
def F(n): # Define the input functions.
def p0(): return lambda n: pow(n, n^0)
def p(k): return lambda n: pow(n + 1, k)
return [p0()] + [p(k) for k in range(n + 1)]
def A(n, dim): # Return only the main diagonal of the triangle.
return [r for r in GeneralizedDelehamDelta(F(n), dim)]
for n in range(7): print(A(n, 7))
def T(n, dim): # Return the regularized triangle.
R = GeneralizedDelehamDelta(F(n), dim, False)
return [[r[k] for k in range(0, len(r), n + 1)] for r in R]
for n in range(0, 4):
for row in T(n, 6): print(row)
A371994
Triangle read by rows: Related to the Euler numbers.
Original entry on oeis.org
1, 0, 1, 0, 1, 5, 0, 1, 19, 61, 0, 1, 42, 498, 1385, 0, 1, 74, 1932, 19238, 50521, 0, 1, 115, 5290, 114830, 1057475, 2702765, 0, 1, 165, 11805, 449539, 8949633, 79160457, 199360981, 0, 1, 224, 23016, 1360198, 47306246, 899141244, 7768928932, 19391512145
Offset: 0
Triangle starts:
[0] [1]
[1] [0, 1]
[2] [0, 1, 5]
[3] [0, 1, 19, 61]
[4] [0, 1, 42, 498, 1385]
[5] [0, 1, 74, 1932, 19238, 50521]
[6] [0, 1, 115, 5290, 114830, 1057475, 2702765]
[7] [0, 1, 165, 11805, 449539, 8949633, 79160457, 199360981]
-
# Using function GeneralizedDelehamDelta from A372001.
def A371994_triangle(dim):
a = lambda n: n % 2
b = lambda n: (n + 1)^2
return GeneralizedDelehamDelta([a, b], dim, False)
for row in A371994_triangle(8): print(row)
Showing 1-4 of 4 results.
Comments