cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A371637 Triangle read by rows: T(n, k) = (-8)^k*binomial(2*n, 2*k)*Euler(2*k, 1/2).

Original entry on oeis.org

1, 1, 2, 1, 12, 20, 1, 30, 300, 488, 1, 56, 1400, 13664, 22160, 1, 90, 4200, 102480, 997200, 1616672, 1, 132, 9900, 450912, 10969200, 106700352, 172976960, 1, 182, 20020, 1465464, 66546480, 1618288672, 15740903360, 25518205568
Offset: 0

Views

Author

Peter Luschny, Apr 02 2024

Keywords

Examples

			Triangle starts:
[0] 1;
[1] 1,   2;
[2] 1,  12,    20;
[3] 1,  30,   300,     488;
[4] 1,  56,  1400,   13664,    22160;
[5] 1,  90,  4200,  102480,   997200,    1616672;
[6] 1, 132,  9900,  450912, 10969200,  106700352,   172976960;
[7] 1, 182, 20020, 1465464, 66546480, 1618288672, 15740903360, 25518205568;
		

Crossrefs

Cf. A001105, A002939 (column 1), A012816 (main diagonal), A371683 (row sums), A371684 (alternating row sums).

Programs

  • Maple
    T := (n, k) -> (-8)^k*binomial(2*n, 2*k)*euler(2*k, 1/2):
    seq(print(seq(T(n, k), k = 0..n)), n = 0..7);
  • Mathematica
    Table[(-8)^k*Binomial[2*n, 2*k]*EulerE[2*k, 1/2], {n, 0, 10}, {k, 0, n}] (* Paolo Xausa, Apr 17 2024 *)
  • SageMath
    def DelehamDelta(R, S, dim):
        ring = PolynomialRing(ZZ, 'x')
        x = ring.gen()
        A = [R(k) + x * S(k) for k in range(dim)]
        C = [ring(0)] + [ring(1) for i in range(dim)]
        for k in range(1, dim + 1):
            for n in range(k - 1, 0, -1):
                C[n] = C[n-1] + C[n+1] * A[n-1]
            yield list(C[1])
    def A371637_triangle(dim):
        a = lambda n: 1 - n % 2
        b = lambda n: 2*(n + 1)^2
        for row in DelehamDelta(a, b, dim): print(row)
    A371637_triangle(8)  # Peter Luschny, Apr 21 2024

Formula

Triangle T(n, k), 0 <= k <=n, read by rows, given by [1, 0, 1, 0, 1, 0, 1, 0, 1, ...] DELTA [2, 8, 18, 32, 50, 72, 98, ...] where DELTA is the operator defined in A084938. - Philippe Deléham, Apr 21 2024
T(n, k) = binomial(2*n, 2*k) * 2^k * abs(Euler(2*k)) = A086645(n, k) * A000079(k) * A000364(k). - Philippe Deléham, Apr 23 2024

A371684 a(n) = Sum_{k=0..n} 2^(3*k)*binomial(2*n, 2*k)*Euler(2*k, 1/2). Alternating row sums of A371637.

Original entry on oeis.org

1, -1, 9, -217, 9841, -717841, 76804665, -11330490025, 2204195526241, -546715992537505, 168397490614671849, -63062013420332052985, 28216110792407667898321, -14866226664969958126495921, 9109882748673411939937074969, -6424247756451800785395922510537
Offset: 0

Views

Author

Peter Luschny, Apr 03 2024

Keywords

Crossrefs

Programs

  • Maple
    seq(add(2^(3*k)*binomial(2*n, 2*k)*euler(2*k, 1/2), k = 0..n), n = 0..15);
  • Mathematica
    Table[Sum[2^(3*k)*Binomial[2*n, 2*k]*EulerE[2*k, 1/2], {k, 0, n}], {n, 0, 20}] (* Paolo Xausa, Apr 17 2024 *)

Formula

a(n) ~ (-1)^n * cos(Pi/(2*sqrt(2))) * 2^(5*n+3) * n^(2*n + 1/2) / (Pi^(2*n + 1/2) * exp(2*n)). - Vaclav Kotesovec, Apr 03 2024
Showing 1-2 of 2 results.