cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A081662 Partial sums of n + Fibonacci(n+1).

Original entry on oeis.org

1, 3, 7, 13, 22, 35, 54, 82, 124, 188, 287, 442, 687, 1077, 1701, 2703, 4316, 6917, 11116, 17900, 28866, 46598, 75277, 121668, 196717, 318135, 514579, 832417, 1346674, 2178743, 3525042, 5703382, 9227992, 14930912, 24158411, 39088798
Offset: 0

Views

Author

Paul Barry, Mar 26 2003

Keywords

Crossrefs

Programs

  • Mathematica
    Accumulate[Table[Total[{n,Fibonacci[n+1]}],{n,0,40}]] (* or *) LinearRecurrence[ {4,-5,1,2,-1},{1,3,7,13,22},41] (* Harvey P. Dale, Nov 19 2011 *)

Formula

a(n) = (1 - 2*sqrt(5)/5)*(sqrt(5)/2 - 1/2)^n*(-1)^n + (sqrt(5)/2 + 1/2)^n*(2*sqrt(5)/5 + 1) + (n^2 + n - 2)/2.
G.f.: (x^3 + x - 1)/((1-x)^3*(x^2 + x - 1)).
a(n) = 4*a(n-1) - 5*a(n-2) + a(n-3) + 2*a(n-4) - a(n-5); a(0)=1, a(1)=3, a(2)=7, a(3)=13, a(4)=22. - Harvey P. Dale, Nov 19 2011
E.g.f.: exp(x)*(x^2 + 2*x - 2)/2 + 2*exp(x/2)*(5*cosh(sqrt(5)*x/2) + 2*sqrt(5)*sinh(sqrt(5)*x/2))/5. - Stefano Spezia, Feb 13 2023