cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A081724 Let b(n)=floor((3/2)^n), c(n)=floor((4/3)^n), d(n)=floor((5/4)^n); sequence gives values of n such that b(n+1)/b(n)=3/2, c(n+1)/c(n)=4/3 and d(n+1)/d(n)=5/4.

Original entry on oeis.org

162, 172, 204, 328, 403, 414, 809, 835, 840, 854, 1111, 1117, 1160, 1188, 1192, 1270, 1294, 1311, 1351, 1409, 1469, 1478, 1508, 1605, 1614, 1769, 1842, 1961, 2065, 2226, 2425, 2456, 2460, 2486, 2581, 2597, 2635, 2638, 2642, 2650, 2679, 2720, 2880, 2932
Offset: 1

Views

Author

Benoit Cloitre, Apr 06 2003

Keywords

Crossrefs

Programs

  • Mathematica
    bcdQ[n_]:=Module[{b=Floor[(3/2)^n],b1=Floor[(3/2)^(n+1)],c=Floor[ (4/3)^n], c1=Floor[(4/3)^(n+1)],d=Floor[(5/4)^n],d1=Floor[(5/4)^(n+1)]}, b1/b==3/2&&c1/c==4/3&&d1/d==5/4]; Select[Range[3000],bcdQ] (* Harvey P. Dale, Jun 08 2013 *)

Formula

It seems that a(n) is asymptotic to C*n where C is around 60.