cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A081753 a(n) = floor(n/12) if n == 2 (mod 12); a(n) = floor(n/12) + 1 otherwise.

Original entry on oeis.org

1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 8, 8, 7, 8, 8, 8, 8, 8, 8, 8, 8, 8, 9, 9, 8, 9, 9, 9, 9, 9, 9
Offset: 0

Views

Author

Benoit Cloitre, Apr 08 2003

Keywords

Comments

a(2n) = dimension of M(2n), where M(2n) denotes the complex vector space of modular forms of weight 2n for the group : PSL2(Z). dimension of M(2n+1) = 0.
See A103221(n) for the dimension of M(2n). The Apostol reference, p. 119, eq. (9) uses even k. - Wolfdieter Lang, Sep 16 2016
The space of modular forms is generated by E_4 (A004009) and E_6 (A013973) both of even weight. This is why the space of modular forms of odd weight is trivial. - Michael Somos, Dec 11 2018

Examples

			G.f. = 1 + x + x^3 + x^4 + x^5 + x^6 + x^7 + x^8 + x^9 + x^10 + x^11 + 2*x^12 + ... - _Michael Somos_, Dec 11 2018
		

References

  • Apostol, Tom M., Modular Functions and Dirichlet Series in Number Theory, second edition, Springer, 1990.
  • Yves Hellegouarch, "Invitation aux mathématiques de Fermat-Wiles", Dunod, 2ème édition, p. 285

Crossrefs

Programs

  • Maple
    seq(floor(n/12)+1-charfcn[0](n-2 mod 12), n=0..100); # Robert Israel, Sep 16 2016
  • Mathematica
    Table[If[Mod[n, 12] == 2, Floor[n/12], Floor[n/12] + 1], {n, 0, 120}] (* or *)
    CoefficientList[Series[(1 - x^2 + x^3)/(1 - x - x^12 + x^13), {x, 0, 120}], x] (* Michael De Vlieger, Sep 19 2016 *)
    a[ n_] := Quotient[n, 12] + Boole[Mod[n, 12] != 2]; (* Michael Somos, Dec 11 2018 *)
  • PARI
    a(k) = if(k%12-2, floor(k/12)+1, floor(k/12))
    
  • PARI
    {a(n) = n\12 + (n%12!=2)}; /* Michael Somos, Dec 11 2018 */

Formula

a(n) = floor(n/12) if n == 2 (mod 12); a(n) = floor(n/12) + 1 otherwise.
G.f.: (1-x^2+x^3)/(1-x-x^12+x^13). - Robert Israel, Sep 16 2016
a(2*n) = A008615(n+2), a(2*n+1) = A097992(n). - Michael Somos, Dec 11 2018