A081782 Continued cotangent for the Gamma constant.
0, 1, 3, 16, 389, 479403, 590817544217, 473341703003810973963339, 269963674630454468003021997747122421847127276823, 84255020180725066155718508782582560544360994462142096519461567461295107080386955008872752275165
Offset: 0
Keywords
Links
- Stefano Spezia, Table of n, a(n) for n = 0..12
- Eric Weisstein's World of Mathematics, Lehmer Cotangent Expansion
Programs
-
Mathematica
Floor[NestList[(#*Floor[#]+1)/(#-Floor[#]) &, EulerGamma, 9]] (* Stefano Spezia, Apr 24 2025 *)
-
PARI
bn=vector(100); b(n)=if(n<0,0,bn[n]); bn[1]=Euler; for(n=2,10,bn[n]=(b(n-1)*floor(b(n-1))+1)/(b(n-1)-floor(b(n-1)))) a(n)=floor(b(n+1))
Formula
Gamma = cot(Sum_{n>=0} (-1)^n*acot(a(n))).
Let b(0) = Gamma, b(n) = (b(n-1)*floor(b(n-1))+1)/(b(n-1)-floor(b(n-1))) then a(n) = floor(b(n)).