cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A081789 Continued cotangent for cos(1).

Original entry on oeis.org

0, 1, 3, 31, 1896, 4466398, 51545652359935, 7892797673015743066290382811, 79208317703482281896053478218775642522933780224074809198, 195824124605155340760338534459689354174423866004140103635128465652592661899008938733448659610261796713081609084855
Offset: 0

Views

Author

Benoit Cloitre, Apr 10 2003

Keywords

References

  • D. H. Lehmer, A cotangent analogue of continued fractions, Duke Math. J., 4 (1935), 323-340.

Crossrefs

Programs

  • Mathematica
    Floor[NestList[(#*Floor[#]+1)/(#-Floor[#]) &, Cos[1], 9]] (* Stefano Spezia, Apr 23 2025 *)
  • PARI
    bn=vector(100);
    bn[1]=cos(1);
    b(n)=if(n<0, 0, bn[n]);
    for(n=2, 10, bn[n]=(b(n-1)*floor(b(n-1))+1)/(b(n-1)-floor(b(n-1))));
    a(n)=floor(b(n+1));

Formula

cos(1) = cot(Sum_{n>=0} (-1)^n*acot(a(n))).
Let b(0) = cos(1), b(n) = (b(n-1)*floor(b(n-1))+1)/(b(n-1)-floor(b(n-1))) then a(n) = floor(b(n)).