A081789 Continued cotangent for cos(1).
0, 1, 3, 31, 1896, 4466398, 51545652359935, 7892797673015743066290382811, 79208317703482281896053478218775642522933780224074809198, 195824124605155340760338534459689354174423866004140103635128465652592661899008938733448659610261796713081609084855
Offset: 0
Keywords
References
- D. H. Lehmer, A cotangent analogue of continued fractions, Duke Math. J., 4 (1935), 323-340.
Programs
-
Mathematica
Floor[NestList[(#*Floor[#]+1)/(#-Floor[#]) &, Cos[1], 9]] (* Stefano Spezia, Apr 23 2025 *)
-
PARI
bn=vector(100); bn[1]=cos(1); b(n)=if(n<0, 0, bn[n]); for(n=2, 10, bn[n]=(b(n-1)*floor(b(n-1))+1)/(b(n-1)-floor(b(n-1)))); a(n)=floor(b(n+1));
Formula
cos(1) = cot(Sum_{n>=0} (-1)^n*acot(a(n))).
Let b(0) = cos(1), b(n) = (b(n-1)*floor(b(n-1))+1)/(b(n-1)-floor(b(n-1))) then a(n) = floor(b(n)).