A081832 a(1)=a(2)=1, a(n) = a(n+1-2*a(n-1)) + a(n-2*a(n-2)).
1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 6, 6, 6, 6, 7, 7, 7, 8, 8, 8, 8, 8, 9, 9, 9, 10, 10, 10, 10, 11, 11, 11, 12, 12, 12, 12, 12, 13, 13, 13, 14, 14, 14, 14, 15, 15, 15, 16, 16, 16, 16, 16, 16, 17, 17, 17, 18, 18, 18, 18, 19, 19, 19, 20, 20, 20, 20, 20, 21, 21, 21, 22, 22, 22
Offset: 1
Links
- Muniru A Asiru, Table of n, a(n) for n = 1..10000
- Altug Alkan, Proof of Slowness
Crossrefs
Cf. A005185.
Programs
-
GAP
a:=[1,1];; for n in [3..80] do a[n]:=a[n+1-2*a[n-1]]+a[n-2*a[n-2]]; od; a; # Muniru A Asiru, Jun 06 2018
-
Maple
a:=proc(n) option remember: if n<3 then 1 else procname(n+1-2*procname(n-1))+procname(n-2*procname(n-2)) fi; end; seq(a(n),n=1..80); # Muniru A Asiru, Jun 06 2018
-
Mathematica
a[1] = a[2] = 1; a[n_] := a[n] = a[n + 1 - 2 a[n - 1]] + a[n - 2 a[n - 2]]; Array[a, 80] (* Robert G. Wilson v, Jun 13 2018 *)
Formula
Conjectures: a(n)/n -> C=1/4; a(n+1)-a(n)=1 or 0, first differences are 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, ....
a(n+1)-a(n)=1 or 0, see Links section for proof. - Altug Alkan, Jun 07 2018
Comments