cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A081849 Consider recurrence b(0) = (2n+1)/2, b(n) = b(0)*ceiling(b(n-1)); sequence gives first integer reached.

Original entry on oeis.org

3, 20, 14, 468, 33, 299, 60, 47328, 95, 1218, 138, 25475, 189, 3161, 248, 20830128, 315, 6512, 390, 181138, 473, 11655, 564, 9015167, 663, 18974, 770, 671745, 885, 28853, 1008, 38906570560, 1139, 41676, 1278, 1799888, 1425, 57827, 1580, 110341278, 1743, 77690
Offset: 1

Views

Author

N. J. A. Sloane, Apr 13 2003

Keywords

Comments

k = A001511(n) is the number of steps to reach an integer b(k).

Crossrefs

Programs

  • Maple
    Digits := 100: c := ceil; A081849 := proc(a) local i,t0,t; t0 := a; t := 0; for i from 1 to 100 do if whattype(t0) <> integer then t0 := a*c(t0); t := t+1; else RETURN(t0); fi; od; RETURN('FAIL'); end;
  • Mathematica
    a[n_]:=Module[{b=b0=(2n+1)/2},While[!IntegerQ[b],b=b0*Ceiling[b]]; b]; Array[a,42] (* Stefano Spezia, Jun 26 2024 *)
  • PARI
    a(n) = if(n==1,3, my(t=2*n+1, k=1+valuation(n,2)); n*t^(k+1) >>k \ (t-2)); \\ Kevin Ryde, Jun 30 2024
  • Python
    from math import ceil
    from fractions import Fraction
    def a(n):
      b0 = b = Fraction((2*n+1), 2)
      while b.denominator != 1: b = b0*ceil(b)
      return b.numerator
    print([a(n) for n in range(1, 43)]) # Michael S. Branicky, Mar 20 2021
    

Formula

a(n) = s*(n*s^k - 1/2) / (s-1) where s = b(0) = (2*n+1)/2 and k = A001511(n). - Kevin Ryde, Jun 30 2024