cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A081853 Consider recurrence b(0) = (2n+1)/2, b(n) = b(n-1)*ceiling(b(n-1)); sequence gives first integer reached.

Original entry on oeis.org

3, 60, 14, 268065, 33, 2093, 60, 1204154941925628, 95, 13398, 138, 701600900, 189, 47415, 248, 1489788110004539889867929328515560588293, 315, 123728, 390, 34427225343, 473, 268065, 564, 19873182780430314444725, 663, 512298, 770, 467193780498, 885, 894443, 1008
Offset: 1

Views

Author

N. J. A. Sloane, Apr 13 2003

Keywords

Crossrefs

A001511 gives number of steps to reach an integer. Cf. A081849, A073524, A074078.
Cf. A081854.

Programs

  • Mathematica
    a[n_]:=Module[{b=(2n+1)/2},While[!IntegerQ[b],b*=Ceiling[b]]; b]; Array[a,31] (* Stefano Spezia, Jun 26 2024 *)

Formula

Define F(x) = x(x+1)/2. Write 2n+1 = 2^i*m + 2^(i-1) + 1, then a(n) = (1/2)F^(i-1)(2n+1). E.g. n=4, 2n+1 = 9 = 2^4*0 + 2^3 + 1, so i=4, m=0 and F(F(F(9))) = F(F(45)) = F(1035) = 536130, a(4) = 536130/2 = 268065.

Extensions

a(30)-a(31) from Stefano Spezia, Jun 26 2024

A081850 Consider recurrence b(0) = (2n+1)/4, b(n) = b(0)*ceiling(b(n-1)); sequence gives number of steps to reach an integer (or -1 if no integer is ever reached).

Original entry on oeis.org

3, 2, 3, 13, 1, 1, 4, 2, 2, 9, 2, 2, 1, 1, 7, 3, 7, 3, 4, 3, 1, 1, 2, 4, 5, 10, 5, 13, 1, 1, 14, 8, 5, 2, 10, 11, 1, 1, 6, 2, 2, 17, 2, 2, 1, 1, 3, 6, 16, 5, 3, 4, 1, 1, 2, 4, 7, 9, 4, 3, 1, 1, 15, 9, 4, 2, 7, 5, 1, 1, 3, 2, 2, 3, 2, 2, 1, 1, 5, 5, 6, 5, 6, 4, 1, 1, 2, 4, 4, 3, 3, 11, 1, 1, 3, 3, 7, 2, 4
Offset: 2

Views

Author

N. J. A. Sloane, Apr 13 2003

Keywords

Crossrefs

Programs

  • Maple
    Digits := 100: c := ceil; A081850 := proc(a) local i,t0,t; t0 := a; t := 0; for i from 1 to 100 do if whattype(t0) <> integer then t0 := a*c(t0); t := t+1; else RETURN(t); fi; od; RETURN('FAIL'); end;

A081851 Consider recurrence b(0) = (2n+1)/4, b(n) = b(0)*ceiling(b(n-1)); sequence gives first integer reached (or -1 if no integer is ever reached).

Original entry on oeis.org

5, 7, 36, 1711985, 13, 15, 1700, 114, 168, 42000323, 275, 324, 58, 62, 23658393, 6055, 58311963, 9321, 121770, 13760, 135, 141, 1960, 344148, 5734229, 3391007266515, 8825709, 23546737390632357, 244, 252, 1526332099115586230, 105432399233, 27538521, 5680
Offset: 2

Views

Author

N. J. A. Sloane, Apr 13 2003

Keywords

Crossrefs

Programs

  • Maple
    g:= proc(n) local b0, b, count;
      b0:= (2*n+1)/4; b:= b0;
      for count from 1 do
        b:= b0 * ceil(b);
        if b::integer then return b fi
      od
    end proc:
    map(g, [$2..100]); # Robert Israel, Sep 21 2018

A081852 Consider recurrence b(0) = n/3, b(n) = b(0)*ceiling(b(n-1)); sequence gives first integer reached (or -1 if no integer is ever reached).

Original entry on oeis.org

1, 4, 20, 2, 7, 8, 3, 26631380, 55, 4, 416, 112, 5, 32, 34, 6, 285, 13960, 7, 67358874, 214544, 8, 75, 78, 9, 62186796, 7399041846, 10, 1178, 173857344, 11, 136, 140, 12, 24494, 2090, 13, 78824360, 2624, 14, 215, 220, 15, 3772, 61617, 16, 23001295794169, 78900, 17, 312
Offset: 3

Views

Author

N. J. A. Sloane, Apr 13 2003

Keywords

Crossrefs

Cf. A073524, A081849, A081850, A081851. A074078 gives number of steps to reach an integer.
Showing 1-4 of 4 results.