cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A081849 Consider recurrence b(0) = (2n+1)/2, b(n) = b(0)*ceiling(b(n-1)); sequence gives first integer reached.

Original entry on oeis.org

3, 20, 14, 468, 33, 299, 60, 47328, 95, 1218, 138, 25475, 189, 3161, 248, 20830128, 315, 6512, 390, 181138, 473, 11655, 564, 9015167, 663, 18974, 770, 671745, 885, 28853, 1008, 38906570560, 1139, 41676, 1278, 1799888, 1425, 57827, 1580, 110341278, 1743, 77690
Offset: 1

Views

Author

N. J. A. Sloane, Apr 13 2003

Keywords

Comments

k = A001511(n) is the number of steps to reach an integer b(k).

Crossrefs

Programs

  • Maple
    Digits := 100: c := ceil; A081849 := proc(a) local i,t0,t; t0 := a; t := 0; for i from 1 to 100 do if whattype(t0) <> integer then t0 := a*c(t0); t := t+1; else RETURN(t0); fi; od; RETURN('FAIL'); end;
  • Mathematica
    a[n_]:=Module[{b=b0=(2n+1)/2},While[!IntegerQ[b],b=b0*Ceiling[b]]; b]; Array[a,42] (* Stefano Spezia, Jun 26 2024 *)
  • PARI
    a(n) = if(n==1,3, my(t=2*n+1, k=1+valuation(n,2)); n*t^(k+1) >>k \ (t-2)); \\ Kevin Ryde, Jun 30 2024
  • Python
    from math import ceil
    from fractions import Fraction
    def a(n):
      b0 = b = Fraction((2*n+1), 2)
      while b.denominator != 1: b = b0*ceil(b)
      return b.numerator
    print([a(n) for n in range(1, 43)]) # Michael S. Branicky, Mar 20 2021
    

Formula

a(n) = s*(n*s^k - 1/2) / (s-1) where s = b(0) = (2*n+1)/2 and k = A001511(n). - Kevin Ryde, Jun 30 2024

A057016 Consider recurrence b(0) = (2n+1)/2, b(n) = b(n-1)*floor(b(n-1)); sequence gives first integer reached.

Original entry on oeis.org

5, 105, 18, 550935, 39, 2730, 68, 2789204756584545, 105, 15939, 150, 943242300, 203, 53940, 264, 3714817857497700192049140000201816119835, 333, 137085, 410, 41463649689, 495, 291870, 588, 27194270698105759097850, 689, 550935, 798, 535022394030, 915
Offset: 2

Views

Author

N. J. A. Sloane, Sep 27 2003

Keywords

Comments

Number of steps to reach an integer is given by A001511. No integer is reached if initial value is 3/2.

Crossrefs

Formula

a(2t) = t(4t+1).

A087675 Consider recurrence b(0) = (2n+1)/2, b(n) = b(0)*floor(b(n-1)); sequence gives first integer reached.

Original entry on oeis.org

5, 35, 18, 814, 39, 390, 68, 72827, 105, 1449, 150, 31887, 203, 3596, 264, 27852510, 333, 7215, 410, 208464, 495, 12690, 588, 10561998, 689, 20405, 798, 744049, 915, 30744, 1040, 46620858503, 1173, 44091, 1314, 1950450, 1463, 60830, 1620, 121575329, 1785
Offset: 2

Views

Author

N. J. A. Sloane, following a suggestion of Bela Bajnok (bbajnok(AT)gettysburg.edu), Sep 27 2003

Keywords

Crossrefs

A001511 gives number of steps to reach an integer.

Programs

  • Maple
    f:= proc(n)
      local b0, b;
      b0:= (2*n+1)/2;
      b:= b0;
      do
        b:= b0*floor(b);
        if b::integer then return b fi
      od
    end proc:
    map(f, [$2..100]); # Robert Israel, Nov 25 2019
  • Mathematica
    f[n_] := Module[{b0, b}, b0 = (2n+1)/2; b = b0; While[True, b = b0*Floor[b]; If[IntegerQ[b], Return[b]]]];
    Table[f[n], {n, 2, 100}] (* Jean-François Alcover, Oct 23 2023, after Robert Israel *)

Formula

The even-indexed terms are given by A007742.

Extensions

Offset corrected by Robert Israel, Nov 25 2019

A081854 a(n) = (8*n - 3)*(4*n - 1)*(8*n^2 - 5*n + 1).

Original entry on oeis.org

3, 60, 2093, 13398, 47415, 123728, 268065, 512298, 894443, 1458660, 2255253, 3340670, 4777503, 6634488, 8986505, 11914578, 15505875, 19853708, 25057533, 31222950, 38461703, 46891680, 56636913, 67827578, 80599995, 95096628, 111466085, 129863118, 150448623
Offset: 0

Views

Author

N. J. A. Sloane, Apr 13 2003

Keywords

Crossrefs

Value of A081853 when started at b(0) with 2*b(0) == 5 (mod 8).

Programs

  • Mathematica
    Table[(8n-3)(4n-1)(8n^2-5n+1),{n,0,30}] (* or *) LinearRecurrence[{5,-10,10,-5,1},{3,60,2093,13398,47415},30] (* Harvey P. Dale, Mar 20 2015 *)
  • PARI
    a(n)=(8*n-3)*(4*n-1)*(8*n^2-5*n+1) \\ Charles R Greathouse IV, Oct 21 2022

Formula

G.f.: (60 + 1793*x + 3533*x^2 + 755*x^3 + 3*x^4)/(1-x)^5.
a(0)=3, a(1)=60, a(2)=2093, a(3)=13398, a(4)=47415, a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5). - Harvey P. Dale, Mar 20 2015
E.g.f.: exp(x)*(3 + 57*x + 988*x^2 + 1216*x^3 + 256*x^4). - Stefano Spezia, Jun 26 2024
Showing 1-4 of 4 results.