A081853 Consider recurrence b(0) = (2n+1)/2, b(n) = b(n-1)*ceiling(b(n-1)); sequence gives first integer reached.
3, 60, 14, 268065, 33, 2093, 60, 1204154941925628, 95, 13398, 138, 701600900, 189, 47415, 248, 1489788110004539889867929328515560588293, 315, 123728, 390, 34427225343, 473, 268065, 564, 19873182780430314444725, 663, 512298, 770, 467193780498, 885, 894443, 1008
Offset: 1
Keywords
Links
Crossrefs
Programs
-
Mathematica
a[n_]:=Module[{b=(2n+1)/2},While[!IntegerQ[b],b*=Ceiling[b]]; b]; Array[a,31] (* Stefano Spezia, Jun 26 2024 *)
Formula
Define F(x) = x(x+1)/2. Write 2n+1 = 2^i*m + 2^(i-1) + 1, then a(n) = (1/2)F^(i-1)(2n+1). E.g. n=4, 2n+1 = 9 = 2^4*0 + 2^3 + 1, so i=4, m=0 and F(F(F(9))) = F(F(45)) = F(1035) = 536130, a(4) = 536130/2 = 268065.
Extensions
a(30)-a(31) from Stefano Spezia, Jun 26 2024