cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A081854 a(n) = (8*n - 3)*(4*n - 1)*(8*n^2 - 5*n + 1).

Original entry on oeis.org

3, 60, 2093, 13398, 47415, 123728, 268065, 512298, 894443, 1458660, 2255253, 3340670, 4777503, 6634488, 8986505, 11914578, 15505875, 19853708, 25057533, 31222950, 38461703, 46891680, 56636913, 67827578, 80599995, 95096628, 111466085, 129863118, 150448623
Offset: 0

Views

Author

N. J. A. Sloane, Apr 13 2003

Keywords

Crossrefs

Value of A081853 when started at b(0) with 2*b(0) == 5 (mod 8).

Programs

  • Mathematica
    Table[(8n-3)(4n-1)(8n^2-5n+1),{n,0,30}] (* or *) LinearRecurrence[{5,-10,10,-5,1},{3,60,2093,13398,47415},30] (* Harvey P. Dale, Mar 20 2015 *)
  • PARI
    a(n)=(8*n-3)*(4*n-1)*(8*n^2-5*n+1) \\ Charles R Greathouse IV, Oct 21 2022

Formula

G.f.: (60 + 1793*x + 3533*x^2 + 755*x^3 + 3*x^4)/(1-x)^5.
a(0)=3, a(1)=60, a(2)=2093, a(3)=13398, a(4)=47415, a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5). - Harvey P. Dale, Mar 20 2015
E.g.f.: exp(x)*(3 + 57*x + 988*x^2 + 1216*x^3 + 256*x^4). - Stefano Spezia, Jun 26 2024