A081855 Decimal expansion of Gamma''(1).
1, 9, 7, 8, 1, 1, 1, 9, 9, 0, 6, 5, 5, 9, 4, 5, 1, 1, 0, 7, 9, 0, 7, 9, 1, 3, 0, 3, 0, 0, 1, 2, 6, 9, 4, 1, 5, 8, 7, 8, 3, 6, 7, 0, 4, 1, 4, 5, 6, 4, 2, 8, 1, 8, 0, 8, 8, 6, 3, 9, 1, 5, 6, 7, 3, 7, 2, 2, 7, 3, 2, 6, 4, 0, 9, 8, 9, 5, 7, 5, 4, 3, 4, 9, 4, 8, 9, 2, 1, 6, 9, 2, 5, 1, 4, 7, 4, 6, 8, 2, 6, 0, 7, 0, 4
Offset: 1
Examples
1.978111990655945110790791303001269415878367... [corrected by _Georg Fischer_, Jul 29 2021]
References
- Bruce C. Berndt, Ramanujan's notebooks Part II, Springer, p. 179.
- Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 1.5.2, p. 31.
Links
- G. C. Greubel, Table of n, a(n) for n = 1..10000
- Tom M. Apostol, Formulas for higher derivatives of the Riemann zeta function, Mathematics of Computation 44 (1985), p. 223-232.
Programs
-
Magma
SetDefaultRealField(RealField(100)); R:= RealField(); L:=RiemannZeta(); EulerGamma(R)^2 + Evaluate(L,2); // G. C. Greubel, Aug 29 2018
-
Mathematica
EulerGamma^2 + Zeta[2] // RealDigits[#, 10, 105] & // First (* Jean-François Alcover, Apr 29 2013 *) RealDigits[ Integrate[ Exp[-x]*Log[x]^2, {x, 0, Infinity}], 10, 111][[1]] (* Robert G. Wilson v, Aug 18 2017 *)
-
PARI
Euler^2+zeta(2) \\ Charles R Greathouse IV, Aug 18 2017
-
PARI
intnum(x=0,[oo,1],exp(-x)*log(x)^2) \\ Charles R Greathouse IV, Aug 18 2017
Formula
The second derivative of Gamma(x) at x=1 is Gamma^2+zeta(2) = 1.97811199... where Gamma is the Euler constant and zeta(2) = Pi^2/6.
Comments