A081894 Fourth binomial transform of C(n+2,2).
1, 7, 46, 290, 1775, 10625, 62500, 362500, 2078125, 11796875, 66406250, 371093750, 2060546875, 11376953125, 62500000000, 341796875000, 1861572265625, 10101318359375, 54626464843750, 294494628906250, 1583099365234375
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (15,-75,125).
Crossrefs
Cf. A081907.
Programs
-
Magma
m:=30; R
:=PowerSeriesRing(Integers(), m); Coefficients(R!((1-4*x)^2/(1-5*x)^3)); // G. C. Greubel, Oct 18 2018 -
Mathematica
LinearRecurrence[{15, -75, 125}, {1, 7, 46}, 50] (* G. C. Greubel, Oct 18 2018 *)
-
PARI
x='x+O('x^30); Vec((1-4*x)^2/(1-5*x)^3) \\ G. C. Greubel, Oct 18 2018
Formula
a(n) = 5^n*(n^2 + 19*n + 50)/50.
G.f.: (1 - 4*x)^2/(1 - 5*x)^3.
E.g.f.: (2 + 4*x + x^2)*exp(5*x)/2. - G. C. Greubel, Oct 18 2018
Comments