cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A081893 Third binomial transform of C(n+2,2).

Original entry on oeis.org

1, 6, 33, 172, 864, 4224, 20224, 95232, 442368, 2031616, 9240576, 41680896, 186646528, 830472192, 3674210304, 16173236224, 70866960384, 309237645312, 1344324763648, 5823975653376, 25151328485376, 108301895335936
Offset: 0

Views

Author

Paul Barry, Mar 30 2003

Keywords

Comments

Binomial transform of A081892.
3rd binomial transform of C(n+2,2), A000217.
4th binomial transform of (1,2,1,0,0,0,.....)

Crossrefs

Cf. A081894.

Programs

  • Magma
    m:=30; R:=PowerSeriesRing(Integers(), m); Coefficients(R!((1-3*x)^2/(1-4*x)^3)); // G. C. Greubel, Oct 18 2018
  • Mathematica
    LinearRecurrence[{12, -48, 64}, {1, 6, 33}, 50] (* G. C. Greubel, Oct 18 2018 *)
  • PARI
    x='x+O('x^30); Vec((1-3*x)^2/(1-4*x)^3) \\ G. C. Greubel, Oct 18 2018
    

Formula

a(n) = 4^n*(n^2 + 15*n + 32)/32.
G.f.: (1 - 3*x)^2/(1 - 4*x)^3.
E.g.f.: (2 + 4*x + x^2)*exp(4*x)/2. - G. C. Greubel, Oct 18 2018

A081907 Fifth binomial transform of binomial(n+2, 2).

Original entry on oeis.org

1, 8, 61, 450, 3240, 22896, 159408, 1096416, 7464960, 50388480, 337602816, 2247326208, 14874679296, 97955205120, 642150789120, 4192482779136, 27270729105408, 176789554200576, 1142549512519680, 7363096858460160, 47326939807481856, 303461150525227008, 1941420131673440256
Offset: 0

Views

Author

Paul Barry, Mar 30 2003

Keywords

Comments

Binomial transform of A081894.
6th binomial transform of (1,2,1,0,0,0,...).

Crossrefs

Programs

  • GAP
    List([1..20],n->6^(n-1)*(n^2+21*n+50))/72; # Muniru A Asiru, Oct 18 2018
  • Magma
    [6^n*(n^2 +23*n +72)/72: n in [0..50]]; // G. C. Greubel, Oct 17 2018
    
  • Maple
    seq(coeff(series((1-5*x)^2/(1-6*x)^3,x,n+1), x, n), n = 0 .. 20); # Muniru A Asiru, Oct 18 2018
  • Mathematica
    Table[6^n*(n^2+23*n+72)/72, {n,0,50}] (* or *) LinearRecurrence[{18,-108, 216}, {1, 8, 61}, 50] (* G. C. Greubel, Oct 17 2018 *)
  • PARI
    vector(50, n, n--; 6^n*(n^2 +23*n +72)/72) \\ G. C. Greubel, Oct 17 2018
    

Formula

a(n) = 6^n*(n^2 + 23*n + 72)/72.
G.f.: (1-5*x)^2/(1-6*x)^3.
E.g.f.: (2 + 4*x + x^2)*exp(6*x)/2. - G. C. Greubel, Oct 17 2018
Showing 1-2 of 2 results.