A081895 Second binomial transform of binomial(n+3, 3).
1, 6, 30, 136, 579, 2358, 9288, 35640, 133893, 494262, 1797714, 6456024, 22930695, 80660934, 281309436, 973599912, 3346483977, 11431295910, 38828142342, 131206405608, 441271936971, 1477621745046, 4927988620080, 16373939547096
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (12,-54,108,-81)
Crossrefs
Cf. A081896.
Programs
-
Magma
m:=30; R
:=PowerSeriesRing(Integers(), m); Coefficients(R!((1-2*x)^3/(1-3*x)^4)); // G. C. Greubel, Oct 18 2018 -
Mathematica
LinearRecurrence[{12, -54, 108, -81}, {1, 6, 30, 136}, 50] (* G. C. Greubel, Oct 18 2018 *)
-
PARI
x='x+O('x^30); Vec((1-2*x)^3/(1-3*x)^4) \\ G. C. Greubel, Oct 18 2018
Formula
a(n) = 3^n*(n^3 + 24*n^2 + 137*n + 162)/162.
G.f.: (1 - 2*x)^3/(1 - 3*x)^4.
E.g.f.: (6 + 18*x + 9*x^2 + x^3)*exp(3*x)/6. - G. C. Greubel, Oct 18 2018
Comments