A081896 Third binomial transform of binomial(n+3, 3).
1, 7, 43, 245, 1328, 6944, 35328, 175872, 860160, 4145152, 19726336, 92864512, 433061888, 2002780160, 9193914368, 41926262784, 190052302848, 856845975552, 3843995729920, 17166984282112, 76347338653696, 338237264494592, 1493136790519808, 6569581975961600, 28816000740753408
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (16,-96,256,-256)
Programs
-
Magma
m:=30; R
:=PowerSeriesRing(Integers(), m); Coefficients(R!((1-3*x)^3/(1-4*x)^4)); // G. C. Greubel, Oct 18 2018 -
Mathematica
LinearRecurrence[{16, -96, 256, -256}, {1, 7, 43, 245}, 50] (* G. C. Greubel, Oct 18 2018 *) CoefficientList[Series[(1-3x)^3/(1-4x)^4,{x,0,30}],x] (* Harvey P. Dale, Nov 30 2021 *)
-
PARI
x='x+O('x^30); Vec((1-3*x)^3/(1-4*x)^4) \\ G. C. Greubel, Oct 18 2018
Formula
a(n) = 4^n*(n^3 + 33*n^2 + 254*n + 384)/384.
G.f.: (1 - 3*x)^3/(1 - 4*x)^4.
E.g.f.: (6 + 18*x + 9*x^2 + x^3)*exp(4*x)/6. - G. C. Greubel, Oct 18 2018
Comments