cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A081901 Second binomial transform of binomial(n+5, 5).

Original entry on oeis.org

1, 8, 49, 262, 1286, 5944, 26262, 111996, 464103, 1877904, 7446735, 29021490, 111405780, 422003520, 1579757580, 5851519704, 21468622077, 78087814776, 281798184573, 1009617794334, 3593281988754, 12710491403112, 44705999907666, 156414048864948, 544562500963779, 1887215083472448
Offset: 0

Views

Author

Paul Barry, Mar 31 2003

Keywords

Comments

Binomial transform of A055852 (without leading 0).
3rd binomial transform of (1,5,10,10,5,1,0,0,0,...).

Crossrefs

Programs

  • Magma
    m:=30; R:=PowerSeriesRing(Integers(), m); Coefficients(R!((1-2*x)^5/(1-3*x)^6)); // G. C. Greubel, Oct 18 2018
  • Mathematica
    LinearRecurrence[{18, -135, 540, -1215, 1458, -729}, {1, 8, 49, 262, 1286, 5944}, 50] (* G. C. Greubel, Oct 18 2018 *)
    CoefficientList[Series[(1-2x)^5/(1-3x)^6,{x,0,30}],x] (* Harvey P. Dale, Oct 22 2024 *)
  • PARI
    x='x+O('x^30); Vec((1-2*x)^5/(1-3*x)^6) \\ G. C. Greubel, Oct 18 2018
    

Formula

a(n) = 3^n*(n^5 + 65*n^4 + 1385*n^3 + 11575*n^2 + 35574*n + 29160)/29160.
G.f.: (1 - 2*x)^5/(1 - 3*x)^6.
E.g.f.: (120 + 600*x + 600*x^2 + 200*x^3 + 25*x^4 + x^5)*exp(3*x)/120. - G. C. Greubel, Oct 18 2018