A081901 Second binomial transform of binomial(n+5, 5).
1, 8, 49, 262, 1286, 5944, 26262, 111996, 464103, 1877904, 7446735, 29021490, 111405780, 422003520, 1579757580, 5851519704, 21468622077, 78087814776, 281798184573, 1009617794334, 3593281988754, 12710491403112, 44705999907666, 156414048864948, 544562500963779, 1887215083472448
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (18,-135,540,-1215,1458,-729).
Programs
-
Magma
m:=30; R
:=PowerSeriesRing(Integers(), m); Coefficients(R!((1-2*x)^5/(1-3*x)^6)); // G. C. Greubel, Oct 18 2018 -
Mathematica
LinearRecurrence[{18, -135, 540, -1215, 1458, -729}, {1, 8, 49, 262, 1286, 5944}, 50] (* G. C. Greubel, Oct 18 2018 *) CoefficientList[Series[(1-2x)^5/(1-3x)^6,{x,0,30}],x] (* Harvey P. Dale, Oct 22 2024 *)
-
PARI
x='x+O('x^30); Vec((1-2*x)^5/(1-3*x)^6) \\ G. C. Greubel, Oct 18 2018
Formula
a(n) = 3^n*(n^5 + 65*n^4 + 1385*n^3 + 11575*n^2 + 35574*n + 29160)/29160.
G.f.: (1 - 2*x)^5/(1 - 3*x)^6.
E.g.f.: (120 + 600*x + 600*x^2 + 200*x^3 + 25*x^4 + x^5)*exp(3*x)/120. - G. C. Greubel, Oct 18 2018
Comments