cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A081908 a(n) = 2^n*(n^2 - n + 8)/8.

Original entry on oeis.org

1, 2, 5, 14, 40, 112, 304, 800, 2048, 5120, 12544, 30208, 71680, 167936, 389120, 892928, 2031616, 4587520, 10289152, 22937600, 50855936, 112197632, 246415360, 538968064, 1174405120, 2550136832, 5519704064, 11911823360, 25635586048
Offset: 0

Views

Author

Paul Barry, Mar 31 2003

Keywords

Comments

Binomial transform of A000124 (when this begins 1,1,2,4,7,...).
2nd binomial transform of (1,0,1,0,0,0,...).
Case k=2 where a(n,k) = k^n(n^2 - n + 2k^2)/(2k^2) with g.f. (1 - 2kx + (k^2+1)x^2)/(1-kx)^3.

Crossrefs

Programs

  • Magma
    [2^n*(n^2-n+8)/8: n in [0..40]]; // Vincenzo Librandi, Apr 27 2011
    
  • Mathematica
    Table[2^n*(n^2-n+8)/8, {n,0,50}] (* or *) LinearRecurrence[{6,-12,8}, {1, 2,5}, 50] (* G. C. Greubel, Oct 17 2018 *)
  • PARI
    a(n)=2^n*(n^2-n+8)/8 \\ Charles R Greathouse IV, Oct 07 2015

Formula

G.f.: (1 - 4*x + 5*x^2)/(1-2*x)^3.
a(n) = A000079(n) + (A001788(n) - A001787(n))/2. - Paul Barry, May 27 2003
a(n) = Sum_{k=0..n} C(n, k)*(1 + C(k, 2)). - Paul Barry, May 27 2003
E.g.f.: (2 + x^2)*exp(2*x)/2. - G. C. Greubel, Oct 17 2018