cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A081911 a(n) = 5^n*(n^2 - n + 50)/50.

Original entry on oeis.org

1, 5, 26, 140, 775, 4375, 25000, 143750, 828125, 4765625, 27343750, 156250000, 888671875, 5029296875, 28320312500, 158691406250, 885009765625, 4913330078125, 27160644531250, 149536132812500, 820159912109375
Offset: 0

Views

Author

Paul Barry, Mar 31 2003

Keywords

Comments

Binomial transform of A081910 5th binomial transform of (1,0,1,0,0,0,...). Case k=5 where a(n,k) = k^n*(n^2 - n + 2k^2)/(2k^2) with g.f. (1 - 2kx + (k^2+1)x^2)/(1-kx)^3.

Crossrefs

Cf. A081912.

Programs

  • Magma
    [5^n*(n^2-n+50)/50: n in [0..40]]; // Vincenzo Librandi, Apr 27 2011
    
  • Mathematica
    Table[5^n(n^2-n+50)/50,{n,0,20}] (* or *) LinearRecurrence[{15,-75,125},{1,5,26},20] (* Harvey P. Dale, Jul 22 2011 *)
  • PARI
    a(n)=5^n*(n^2-n+50)/50 \\ Charles R Greathouse IV, Oct 07 2015

Formula

a(n) = 5^n*(n^2 - n + 50)/50.
G.f.: (1 - 10x + 26x^2)/(1-5x)^3.
a(n) = 15*a(n-1) - 75*a(n-2) + 125*a(n-3); a(0)=1, a(1)=5, a(2)=26. - _Harvey P. Dale, Jul 22 2011

A081918 a(0) = 1; a(n) = n^(n-1)(3n-1)/2 (n>0).

Original entry on oeis.org

1, 1, 5, 36, 352, 4375, 66096, 1176490, 24117248, 559607373, 14500000000, 414998793616, 13002646487040, 442663617327139, 16271152851709952, 642244372558593750, 27093655358260903936, 1216529796891671712025
Offset: 0

Views

Author

Paul Barry, Mar 31 2003

Keywords

Comments

Main diagonal of square array T(n,k) where T(n,k)=k^n(n^2-n+2k^2)/(2k^2), in which rows have g.f. (1-2kx+(k^2+1)x^2)/(1-kx)^3.

Crossrefs

Formula

a(0)=1, a(n)=a(n)=n^n(n^2-n+2n^2)/(2n^2), n>0.
Showing 1-2 of 2 results.