A081911 a(n) = 5^n*(n^2 - n + 50)/50.
1, 5, 26, 140, 775, 4375, 25000, 143750, 828125, 4765625, 27343750, 156250000, 888671875, 5029296875, 28320312500, 158691406250, 885009765625, 4913330078125, 27160644531250, 149536132812500, 820159912109375
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..150
- Index entries for linear recurrences with constant coefficients, signature (15,-75,125).
Crossrefs
Cf. A081912.
Programs
-
Magma
[5^n*(n^2-n+50)/50: n in [0..40]]; // Vincenzo Librandi, Apr 27 2011
-
Mathematica
Table[5^n(n^2-n+50)/50,{n,0,20}] (* or *) LinearRecurrence[{15,-75,125},{1,5,26},20] (* Harvey P. Dale, Jul 22 2011 *)
-
PARI
a(n)=5^n*(n^2-n+50)/50 \\ Charles R Greathouse IV, Oct 07 2015
Formula
a(n) = 5^n*(n^2 - n + 50)/50.
G.f.: (1 - 10x + 26x^2)/(1-5x)^3.
a(n) = 15*a(n-1) - 75*a(n-2) + 125*a(n-3); a(0)=1, a(1)=5, a(2)=26. - _Harvey P. Dale, Jul 22 2011
Comments