A081923 Expansion of e.g.f.: exp(2x)/(1-x)^2.
1, 4, 18, 92, 536, 3552, 26608, 223456, 2085504, 21450752, 241320704, 2949474816, 38933066752, 552141672448, 8374148696064, 135274709700608, 2318995023429632, 42051109758173184, 804227474125029376
Offset: 0
Examples
For n=2, the a(2)=18 forests that satisfy the specified conditions are given in the link above. - _Dennis P. Walsh_, Sep 20 2013
Links
- Harvey P. Dale, Table of n, a(n) for n = 0..448
- Paul Barry, A note on number triangles that are almost their own production matrix, arXiv:1804.06801 [math.CO], 2018.
- Dennis P. Walsh, 18 Forests
Crossrefs
Programs
-
Maple
seq(n!*add((k+1)*2^(n-k)/(n-k)!,k=0..n),n=0..40); # Dennis P. Walsh, Sep 18 2013 seq(simplify(KummerU(-n, -n - 1, 2)), n = 0..24); # Peter Luschny, May 10 2022
-
Mathematica
With[{nn=20},CoefficientList[Series[Exp[2x]/(1-x)^2,{x,0,nn}],x] Range[0,nn]!] (* Harvey P. Dale, May 10 2025 *)
Formula
E.g.f.: exp(2*x)/(1-x)^2
E.g.f.: 1/U(0) where U(k)= 1 - 2*x/( 1 + x/(2 - x - 4/( 2 - x*(k+1)/U(k+1)))) ; (continued fraction, 3rd kind, 4-step). - Sergei N. Gladkovskii, Oct 28 2012
Conjecture: a(n) +(-n-3)*a(n-1) +2*(n-1)*a(n-2)=0. - R. J. Mathar, Nov 24 2012
G.f.: 2/x/G(0) - 1/x, where G(k)= 1 + 1/(1 - x*(2*k+2)/(x*(2*k+4) - 1 + x*(2*k+2)/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, May 31 2013
G.f.: (sum(k>=0, k!*(x/(1-2*x))^k ) - 1)/x = Q(0)/(2*x) - 1/x, where Q(k)= 1 + 1/(1 - x*(k+1)/(x*(k+1) + (1-2*x)/Q(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Aug 09 2013
G.f.: W(0)/x - 1/x, where W(k) = 1 - x*(k+1)/( x*(k+3) - 1/(1 - x*(k+1)/( x*(k+1) - 1/W(k+1) ))); (continued fraction). - Sergei N. Gladkovskii, Aug 26 2013
a(n) = n!*sum(k=0..n, (k+1)*2^(n-k)/(n-k)!). [Dennis P. Walsh, Sep 18 2013]
a(n) = n!*sum(k=0..n, (n-k+1)*2^k/k!). [Dennis P. Walsh, Sep 18 2013]
From Peter Bala, Sep 25 2013: (Start)
a(n) ~ n!*n*e^2.
Applying Maple's ZeilbergerRecurrence command to the above series of Walsh for a(n) results in the first-order recurrence equation (n - 1)*a(n+1) = n*(n + 1)*a(n) - 2^(n+2) with a(0) = 1 and a(2) = 18. Using this it is easy to verify that a(n) satisfies the second-order recurrence a(n) = (n + 3)*a(n-1) - 2*(n - 1)*a(n-2) conjectured above by Mathar.
The sequence b(n) = n!*(n - 1) satisfies the same second-order recurrence but with the initial conditions b(0) = -1 and b(1) = 0. This leads to the finite continued fraction expansion a(n)/b(n) = 9 - 2*( 4/(6 - 6/(7 - 8/(9 - ... - 2*n/(n + 4)))) ) valid for n >= 2. Letting n tend to infinity produces the infinite continued fraction expansion e^2 = 9 - 2*( 4/(6 - 6/(7 - 8/(9 - ... - 2*n/(n + 4 - ...)))) ). (End)
a(n) = KummerU(-n, -n - 1, 2). - Peter Luschny, May 10 2022
Extensions
Definition clarified by Harvey P. Dale, May 10 2025
Comments