cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A081927 n-th positive integer whose digits sum up to n.

Original entry on oeis.org

1, 11, 21, 31, 41, 51, 61, 71, 81, 109, 137, 165, 193, 257, 294, 376, 467, 567, 676, 785, 894, 1399, 1778, 1986, 2887, 3869, 4869, 5878, 6887, 7896, 8959, 9968, 18798, 26998, 35999, 45999, 56899, 66989, 76998, 87799, 97889, 178899, 199798, 298988, 398988
Offset: 1

Views

Author

Amarnath Murthy, Apr 01 2003

Keywords

Examples

			31 is the 4th integer of the sequence and the 4th number whose digits sum up to 4 : 4, 13, 22, [31], 103, 112, 121, 130, ...
109 is the 10th integer of the sequence and the 10th number whose digits sum up to 10 : 19, 28, 37, 46, 55, 64, 73, 82, 91, [109], 118, 127, 136, ...
		

Crossrefs

Leading diagonal of A081926.

Programs

  • Maple
    f:= proc(n) local Res, d, v, count;
        count:= 0;
        for d from ceil(n/9) while count < n do
           v:= g(n,d,n-count,1);
           Res:= v[-1];
           count:= count + nops(v);
        od:
        Res
    end proc:
    g:= proc(n,d,remain) local rem, Res, j, j0, v;
          if remain = 0 then return [] else rem:= remain fi;
          if nargs = 4 then j0:= 1 else j0:= 0 fi;
          if d = 1 then if n >= j0 and n <= 9 then [n] else [] fi
          else
            Res:= NULL;
            for j from max(j0, ceil(n-9*(d-1))) to min(9,n) while rem > 0 do
              v:= map(t -> j*10^(d-1)+t, procname(n-j,d-1,rem));
              Res:= Res, op(v);
              rem:= rem - nops(v);
            od;
            [Res]
          fi
    end proc:
    map(f, [$1..200]); # Robert Israel, Feb 19 2018
  • Mathematica
    Table[Select[Range[500000],Total[IntegerDigits[#]]==n&][[n]],{n,45}] (* Harvey P. Dale, Mar 02 2024 *)

Formula

From Robert Israel, Feb 20 2018: (Start)
a(9*k-j) = (12-j)*10^(k-1) - 10^(k-10) - 10^(j+k-45) - 1 for j=2..9, k >= 45-j.
a(9*k-1) = 2*10^k - 10^(k-9) - 10^(k-35) - 1, k >= 35. (End)

Extensions

Corrected and extended by Ray Chandler, Oct 29 2003