cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A082024 Number of partitions of n into 3 parts which have common divisors.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 2, 0, 4, 0, 4, 3, 5, 0, 9, 0, 9, 5, 10, 0, 16, 2, 14, 7, 17, 0, 27, 0, 21, 11, 24, 6, 36, 0, 30, 15, 37, 0, 51, 0, 41, 25, 44, 0, 64, 4, 58, 25, 57, 0, 81, 12, 69, 31, 70, 0, 108, 0, 80, 43, 85, 16, 123, 0, 97, 45, 120, 0, 144, 0, 114, 69, 121, 14, 171, 0
Offset: 0

Views

Author

Amarnath Murthy, Apr 07 2003

Keywords

Comments

a(p) = 0 if p is a prime. Can anyone suggest a formula?
See example for a method to find a(n). - David A. Corneth, Aug 24 2020

Examples

			a(14) = 4 and the partitions are (10,2,2), (8,4,2),(6,6,2) and (6,4,4).
a(13) = 0 as for all r + s + t = 13,r > 0, s > 0,t> 0 gcd(r,s,t) = 1.
From _David A. Corneth_, Aug 24 2020: (Start)
a(100) = 233. The squarefree part of 100 is 10. The divisors of 10 are 1, 2, 5 and 10.
These are the possible squarefree divisors of parts. As parts must not be coprime, we exclude 1, leaving 2, 5 and 10. We then compute 100/k for each of these numbers.
This gives 50, 20 and 10 respectively. Now a(100) is found by adding -(round(50^2/12)*(-1)^omega(2) + round(20^2/12)*(-1)^omega(5) + round(10^2/12)*(-1)^omega(10)) = -(-208 - 33 + 8) = 233 where omega(m) is the number of distinct divisors of m (Cf. A001221) and round(m^2/12) is the number of partitions of m into 3 parts (Cf. A069905) (End)
		

Crossrefs

Programs

  • Mathematica
    a[n_] := Length[Select[Flatten[Table[{a, b, n-a-b}, {a, 1, Floor[n/3]}, {b, a, Floor[(n-a)/2]}], 1], GCD@@#1>1&]]
  • PARI
    a(n) = if(n==0, return(0)); cn = factorback(factor(n)[, 1]); d = divisors(cn); -sum(i = 2, #d, round((n/d[i])^2/12) * (-1)^omega(d[i])) \\ David A. Corneth, Aug 24 2020

Extensions

More terms from Antonio G. Astudillo (afg_astudillo(AT)lycos.com), Apr 20 2003 and Dean Hickerson, Apr 22 2003