cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 14 results. Next

A307719 Number of partitions of n into 3 mutually coprime parts.

Original entry on oeis.org

0, 0, 0, 1, 1, 1, 2, 1, 3, 2, 4, 2, 7, 2, 8, 4, 8, 4, 15, 4, 16, 7, 15, 7, 26, 7, 23, 11, 26, 10, 43, 9, 35, 16, 38, 16, 54, 14, 49, 23, 54, 18, 79, 18, 66, 31, 64, 25, 100, 25, 89, 36, 85, 31, 127, 35, 104, 46, 104, 39, 167, 36, 125, 58, 129, 52, 185, 45
Offset: 0

Views

Author

Wesley Ivan Hurt, Apr 24 2019

Keywords

Comments

The Heinz numbers of these partitions are the intersection of A014612 (triples) and A302696 (pairwise coprime). - Gus Wiseman, Oct 16 2020

Examples

			There are 2 partitions of 9 into 3 mutually coprime parts: 7+1+1 = 5+3+1, so a(9) = 2.
There are 4 partitions of 10 into 3 mutually coprime parts: 8+1+1 = 7+2+1 = 5+4+1 = 5+3+2, so a(10) = 4.
There are 2 partitions of 11 into 3 mutually coprime parts: 9+1+1 = 7+3+1, so a(11) = 2.
There are 7 partitions of 12 into 3 mutually coprime parts: 10+1+1 = 9+2+1 = 8+3+1 = 7+4+1 = 6+5+1 = 7+3+2 = 5+4+3, so a(12) = 7.
		

Crossrefs

A023022 is the version for pairs.
A220377 is the strict case, with ordered version A220377*6.
A327516 counts these partitions of any length, with strict version A305713 and Heinz numbers A302696.
A337461 is the ordered version.
A337563 is the case with no 1's.
A337599 is the pairwise non-coprime instead of pairwise coprime version.
A337601 only requires the distinct parts to be pairwise coprime.
A001399(n-3) = A069905(n) = A211540(n+2) counts 3-part partitions.
A002865 counts partitions with no 1's, with strict case A025147.
A007359 and A337485 count pairwise coprime partitions with no 1's.
A200976 and A328673 count pairwise non-coprime partitions.

Programs

  • Maple
    N:= 200: # to get a(0)..a(N)
    A:= Array(0..N):
    for a from 1 to N/3 do
      for b from a to (N-a)/2 do
        if igcd(a,b) > 1 then next fi;
        ab:= a*b;
        for c from b to N-a-b do
           if igcd(ab,c)=1 then A[a+b+c]:= A[a+b+c]+1 fi
    od od od:
    convert(A,list); # Robert Israel, May 09 2019
  • Mathematica
    Table[Sum[Sum[Floor[1/(GCD[i, j] GCD[j, n - i - j] GCD[i, n - i - j])], {i, j, Floor[(n - j)/2]}], {j, Floor[n/3]}], {n, 0, 100}]
    Table[Length[Select[IntegerPartitions[n,{3}],CoprimeQ@@#&]],{n,0,100}] (* Gus Wiseman, Oct 15 2020 *)

Formula

a(n) = Sum_{j=1..floor(n/3)} Sum_{i=j..floor((n-j)/2)} [gcd(i,j) * gcd(j,n-i-j) * gcd(i,n-i-j) = 1], where [] is the Iverson bracket.
a(n > 2) = A220377(n) + 1. - Gus Wiseman, Oct 15 2020

A284825 Number of partitions of n into 3 parts without common divisors such that every pair of them has common divisors.

Original entry on oeis.org

1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 2, 0, 1, 0, 0, 0, 2, 0, 1, 0, 0, 0, 2, 0, 1, 0, 0, 0, 3, 0, 5, 0, 0, 0, 1, 0, 5, 0, 1, 0, 6, 0, 6, 0, 0, 0, 4, 0, 6, 0, 0, 0, 9, 0, 2, 1, 2, 0, 9, 0, 8, 1, 1, 0, 5, 0, 14, 0, 1, 0, 15, 0, 14, 0, 0, 1, 14, 0, 14, 0, 2, 0, 15, 0, 6, 1, 2, 1, 11, 0, 18, 1, 1, 0, 10, 0, 23
Offset: 31

Views

Author

Alois P. Heinz, Apr 03 2017

Keywords

Comments

The Heinz numbers of these partitions are the intersection of A014612 (triples), A289509 (relatively prime), and A337694 (pairwise non-coprime). - Gus Wiseman, Oct 16 2020

Examples

			a(31) = 1: [6,10,15] = [2*3,2*5,3*5].
a(41) = 2: [6,14,21], [6,15,20].
From _Gus Wiseman_, Oct 14 2020: (Start)
Selected terms and the corresponding triples:
  a(31)=1: a(41)=2: a(59)=3:  a(77)=4:  a(61)=5:  a(71)=6:
-------------------------------------------------------------
  15,10,6  20,15,6  24,20,15  39,26,12  33,22,6   39,26,6
           21,14,6  24,21,14  42,20,15  40,15,6   45,20,6
                    35,14,10  45,20,12  45,10,6   50,15,6
                              50,15,12  28,21,12  35,21,15
                                        36,15,10  36,20,15
                                                  36,21,14
(End)
		

Crossrefs

A023023 does not require pairwise non-coprimality, with strict case A101271.
A202425 and A328672 count these partitions of any length, ranked by A328868.
A284825*6 is the ordered version.
A307719 is the pairwise coprime instead of non-coprime version.
A337599 does not require relatively primality, with strict case A337605.
A200976 and A328673 count pairwise non-coprime partitions.
A289509 gives Heinz numbers of relatively prime partitions.
A327516 counts pairwise coprime partitions, ranked by A333227.
A337694 gives Heinz numbers of pairwise non-coprime partitions.

Programs

  • Maple
    a:= proc(n) option remember; add(add(`if`(igcd(i, j)>1
          and igcd(i, j, n-i-j)=1 and igcd(i, n-i-j)>1 and
          igcd(j, n-i-j)>1, 1, 0), j=i..(n-i)/2), i=2..n/3)
        end:
    seq(a(n), n=31..137);
  • Mathematica
    a[n_] := a[n] = Sum[Sum[If[GCD[i, j] > 1 && GCD[i, j, n - i - j] == 1 && GCD[i, n - i - j] > 1 && GCD[j, n - i - j] > 1, 1, 0], {j, i, (n - i)/2} ], {i, 2, n/3}];
    Table[a[n], {n, 31, 137}] (* Jean-François Alcover, Jun 13 2018, from Maple *)
    stabQ[u_,Q_]:=And@@Not/@Q@@@Tuples[u,2];
    Table[Length[Select[IntegerPartitions[n,{3}],GCD@@#==1&&stabQ[#,CoprimeQ]&]],{n,31,100}] (* Gus Wiseman, Oct 14 2020 *)

Formula

a(n) > 0 iff n in { A230035 }.
a(n) = 0 iff n in { A230034 }.

A337605 Number of unordered triples of distinct positive integers summing to n, any two of which have a common divisor > 1.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 2, 0, 4, 0, 4, 1, 5, 0, 9, 0, 8, 3, 10, 0, 17, 1, 14, 5, 16, 1, 25, 1, 21, 8, 26, 2, 37, 1, 30, 15, 33, 2, 49, 2, 44, 16, 44, 2, 64, 6, 54, 21, 56, 3, 87, 5, 65, 30, 70, 9, 101, 5, 80, 34, 98, 6, 121, 6, 96, 52
Offset: 0

Views

Author

Gus Wiseman, Sep 20 2020

Keywords

Examples

			The a(n) triples for n = 12, 16, 18, 22, 27, 55:
  (6,4,2)  (8,6,2)   (8,6,4)   (10,8,4)  (12,9,6)  (28,21,6)
           (10,4,2)  (9,6,3)   (12,6,4)  (15,9,3)  (30,20,5)
                     (10,6,2)  (12,8,2)  (18,6,3)  (35,15,5)
                     (12,4,2)  (14,6,2)            (40,10,5)
                               (16,4,2)            (25,20,10)
                                                   (30,15,10)
		

Crossrefs

A014612 intersected with A318719 ranks these partitions.
A220377 is the coprime instead of non-coprime version.
A318717 counts these partitions of any length, ranked by A318719.
A337599 is the non-strict version.
A337604 is the ordered non-strict version.
A337605*6 is the ordered version.
A023023 counts relatively prime 3-part partitions
A051424 counts pairwise coprime or singleton partitions.
A200976 and A328673 count pairwise non-coprime partitions.
A307719 counts pairwise coprime 3-part partitions.
A327516 counts pairwise coprime partitions, with strict case A305713.

Programs

  • Mathematica
    stabQ[u_,Q_]:=Array[#1==#2||!Q[u[[#1]],u[[#2]]]&,{Length[u],Length[u]},1,And];
    Table[Length[Select[IntegerPartitions[n,{3}],UnsameQ@@#&&stabQ[#,CoprimeQ]&]],{n,0,100}]

A337563 Number of pairwise coprime unordered triples of positive integers > 1 summing to n.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 2, 0, 2, 1, 4, 0, 7, 1, 7, 3, 9, 2, 15, 3, 13, 5, 17, 4, 29, 5, 20, 8, 28, 8, 42, 8, 31, 14, 42, 10, 59, 12, 45, 21, 52, 14, 77, 17, 68, 26, 69, 19, 101, 26, 84, 34, 86, 25, 138, 28, 95, 43, 111, 36, 161, 35, 118, 52, 151
Offset: 0

Views

Author

Gus Wiseman, Sep 21 2020

Keywords

Comments

Such partitions are necessarily strict.
The Heinz numbers of these partitions are the intersection of A005408 (no 1's), A014612 (triples), and A302696 (coprime).

Examples

			The a(10) = 1 through a(24) = 15 triples (empty columns indicated by dots, A..J = 10..19):
  532  .  543  .  743  753  754  .  765  B53  875  975  985  B75  987
          732     752       853     873       974  B73  B65  D73  B76
                            952     954       A73  D53  B74       B85
                            B32     972       B54       B83       B94
                                    B43       B72       B92       BA3
                                    B52       D43       D54       C75
                                    D32       D52       D72       D65
                                                        E53       D74
                                                        H32       D83
                                                                  D92
                                                                  F72
                                                                  G53
                                                                  H43
                                                                  H52
                                                                  J32
		

Crossrefs

A055684 is the version for pairs.
A220377 allows 1's, with non-strict version A307719.
A337485 counts these partitions of any length.
A337563*6 is the ordered version.
A001399(n - 3) = A069905(n) = A211540(n + 2) counts 3-part partitions.
A002865 counts partitions with no 1's, with strict case A025147.
A007359 counts pairwise coprime partitions with no 1's.
A078374 counts relatively prime strict partitions.
A200976 and A328673 count pairwise non-coprime partitions.
A302696 ranks pairwise coprime partitions.
A302698 counts relatively prime partitions with no 1's.
A305713 counts pairwise coprime strict partitions.
A327516 counts pairwise coprime partitions.
A337452 counts relatively prime strict partitions with no 1's.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n,{3}],!MemberQ[#,1]&&CoprimeQ@@#&]],{n,0,30}]

A337604 Number of ordered triples of positive integers summing to n, any two of which have a common divisor > 1.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 1, 0, 3, 1, 6, 0, 13, 0, 15, 7, 21, 0, 37, 0, 39, 16, 45, 0, 73, 6, 66, 28, 81, 0, 130, 6, 105, 46, 120, 21, 181, 6, 153, 67, 189, 12, 262, 6, 213, 118, 231, 12, 337, 21, 306, 121, 303, 12, 433, 57, 369, 154, 378, 18, 583, 30, 435, 217, 465
Offset: 0

Views

Author

Gus Wiseman, Sep 20 2020

Keywords

Comments

The first relatively prime triple (15,10,6) is counted under a(31).

Examples

			The a(6) = 1 through a(15) = 7 triples (empty columns indicated by dots, A = 10):
  222  .  224  333  226  .  228  .  22A  339
          242       244     246     248  366
          422       262     264     266  393
                    424     282     284  555
                    442     336     2A2  636
                    622     363     428  663
                            426     446  933
                            444     464
                            462     482
                            624     626
                            633     644
                            642     662
                            822     824
                                    842
                                    A22
		

Crossrefs

A014311 intersected with A337666 ranks these compositions.
A337667 counts these compositions of any length.
A335402 lists the positions of zeros.
A337461 is the coprime instead of non-coprime version.
A337599 is the unordered version, with strict case A337605.
A337605*6 is the strict version.
A000741 counts relatively prime 3-part compositions.
A101268 counts pairwise coprime or singleton compositions.
A200976 and A328673 count pairwise non-relatively prime partitions.
A307719 counts pairwise coprime 3-part partitions.
A318717 counts pairwise non-coprime strict partitions.
A333227 ranks pairwise coprime compositions.

Programs

  • Mathematica
    stabQ[u_,Q_]:=Array[#1==#2||!Q[u[[#1]],u[[#2]]]&,{Length[u],Length[u]},1,And];
    Table[Length[Select[Join@@Permutations/@IntegerPartitions[n,{3}],stabQ[#,CoprimeQ]&]],{n,0,100}]

A337599 Number of unordered triples of positive integers summing to n, any two of which have a common divisor > 1.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 2, 0, 4, 0, 4, 3, 5, 0, 9, 0, 9, 5, 10, 0, 16, 2, 14, 7, 17, 0, 27, 1, 21, 11, 24, 6, 36, 1, 30, 15, 37, 2, 51, 1, 41, 25, 44, 2, 64, 5, 58, 25, 57, 2, 81, 13, 69, 31, 70, 3, 108, 5, 80, 43, 85, 17, 123, 5, 97, 46, 120, 6, 144, 6
Offset: 0

Views

Author

Gus Wiseman, Sep 20 2020

Keywords

Comments

First differs from A082024 at a(31) = 1, A082024(31) = 0.
The first relatively prime triple is (15,10,6), counted under a(31).

Examples

			The a(6) = 1 through a(16) = 5 partitions are (empty columns indicated by dots, A..G = 10..16):
  222  .  422  333  442  .  444  .  644  555  664  .  666  .  866
                    622     633     662  663  844     864     884
                            642     842  933  862     882     A55
                            822     A22       A42     963     A64
                                              C22     A44     A82
                                                      A62     C44
                                                      C33     C62
                                                      C42     E42
                                                      E22     G22
		

Crossrefs

A014612 intersected with A337694 ranks these partitions.
A200976 and A328673 count these partitions of any length.
A284825 is the case that is also relatively prime.
A307719 is the pairwise coprime instead of non-coprime version.
A335402 gives the positions of zeros.
A337604 is the ordered version.
A337605 is the strict case.
A051424 counts pairwise coprime or singleton partitions.
A101268 counts pairwise coprime or singleton compositions.
A305713 counts strict pairwise coprime partitions.
A327516 counts pairwise coprime partitions.
A333227 ranks pairwise coprime compositions.
A333228 ranks compositions whose distinct parts are pairwise coprime.

Programs

  • Mathematica
    stabQ[u_,Q_]:=Array[#1==#2||!Q[u[[#1]],u[[#2]]]&,{Length[u],Length[u]},1,And];
    Table[Length[Select[IntegerPartitions[n,{3}],stabQ[#,CoprimeQ]&]],{n,0,100}]

A337667 Number of compositions of n where any two parts have a common divisor > 1.

Original entry on oeis.org

1, 0, 1, 1, 2, 1, 5, 1, 8, 4, 17, 1, 38, 1, 65, 19, 128, 1, 284, 1, 518, 67, 1025, 1, 2168, 16, 4097, 256, 8198, 1, 16907, 7, 32768, 1027, 65537, 79, 133088, 19, 262145, 4099, 524408, 25, 1056731, 51, 2097158, 16636, 4194317, 79, 8421248, 196, 16777712
Offset: 0

Views

Author

Gus Wiseman, Oct 05 2020

Keywords

Comments

First differs from A178472 at a(31) = 7, a(31) = 1.

Examples

			The a(2) = 1 through a(10) = 17 compositions (A = 10):
   2   3   4    5   6     7   8      9     A
           22       24        26     36    28
                    33        44     63    46
                    42        62     333   55
                    222       224          64
                              242          82
                              422          226
                              2222         244
                                           262
                                           424
                                           442
                                           622
                                           2224
                                           2242
                                           2422
                                           4222
                                           22222
		

Crossrefs

A101268 = 1 + A337462 is the pairwise coprime version.
A328673 = A200976 + 1 is the unordered version.
A337604 counts these compositions of length 3.
A337666 ranks these compositions.
A337694 gives Heinz numbers of the unordered version.
A337983 is the strict case.
A051185 counts intersecting set-systems, with spanning case A305843.
A318717 is the unordered strict case.
A319786 is the version for factorizations, with strict case A318749.
A327516 counts pairwise coprime partitions.
A333227 ranks pairwise coprime compositions.
A333228 ranks compositions whose distinct parts are pairwise coprime.

Programs

  • Mathematica
    stabQ[u_,Q_]:=And@@Not/@Q@@@Tuples[u,2];
    Table[Length[Join@@Permutations/@Select[IntegerPartitions[n],stabQ[#,CoprimeQ]&]],{n,0,15}]

A337666 Numbers k such that any two parts of the k-th composition in standard order (A066099) have a common divisor > 1.

Original entry on oeis.org

0, 2, 4, 8, 10, 16, 32, 34, 36, 40, 42, 64, 128, 130, 136, 138, 160, 162, 168, 170, 256, 260, 288, 292, 512, 514, 520, 522, 528, 544, 546, 552, 554, 640, 642, 648, 650, 672, 674, 680, 682, 1024, 2048, 2050, 2052, 2056, 2058, 2080, 2082, 2084, 2088, 2090, 2176
Offset: 1

Views

Author

Gus Wiseman, Oct 05 2020

Keywords

Comments

Differs from A291165 in having 1090535424, corresponding to the composition (6,10,15).
This is a ranking sequence for pairwise non-coprime compositions.
The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.

Examples

			The sequence together with the corresponding compositions begins:
       0: ()          138: (4,2,2)       546: (4,4,2)
       2: (2)         160: (2,6)         552: (4,2,4)
       4: (3)         162: (2,4,2)       554: (4,2,2,2)
       8: (4)         168: (2,2,4)       640: (2,8)
      10: (2,2)       170: (2,2,2,2)     642: (2,6,2)
      16: (5)         256: (9)           648: (2,4,4)
      32: (6)         260: (6,3)         650: (2,4,2,2)
      34: (4,2)       288: (3,6)         672: (2,2,6)
      36: (3,3)       292: (3,3,3)       674: (2,2,4,2)
      40: (2,4)       512: (10)          680: (2,2,2,4)
      42: (2,2,2)     514: (8,2)         682: (2,2,2,2,2)
      64: (7)         520: (6,4)        1024: (11)
     128: (8)         522: (6,2,2)      2048: (12)
     130: (6,2)       528: (5,5)        2050: (10,2)
     136: (4,4)       544: (4,6)        2052: (9,3)
		

Crossrefs

A337604 counts these compositions of length 3.
A337667 counts these compositions.
A337694 is the version for Heinz numbers of partitions.
A337696 is the strict case.
A051185 and A305843 (covering) count pairwise intersecting set-systems.
A101268 counts pairwise coprime or singleton compositions.
A200976 and A328673 count pairwise non-coprime partitions.
A318717 counts strict pairwise non-coprime partitions.
A327516 counts pairwise coprime partitions.
A335236 ranks compositions neither a singleton nor pairwise coprime.
A337462 counts pairwise coprime compositions.
All of the following pertain to compositions in standard order (A066099):
- A000120 is length.
- A070939 is sum.
- A124767 counts runs.
- A233564 ranks strict compositions.
- A272919 ranks constant compositions.
- A291166 appears to rank relatively prime compositions.
- A326674 is greatest common divisor.
- A333219 is Heinz number.
- A333227 ranks coprime (Mathematica definition) compositions.
- A333228 ranks compositions with distinct parts coprime.
- A335235 ranks singleton or coprime compositions.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join@@Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    stabQ[u_,Q_]:=And@@Not/@Q@@@Tuples[u,2];
    Select[Range[0,1000],stabQ[stc[#],CoprimeQ]&]

A082023 Number of partitions of n into 2 parts which are not relatively prime.

Original entry on oeis.org

0, 0, 0, 0, 1, 0, 2, 0, 2, 1, 3, 0, 4, 0, 4, 3, 4, 0, 6, 0, 6, 4, 6, 0, 8, 2, 7, 4, 8, 0, 11, 0, 8, 6, 9, 5, 12, 0, 10, 7, 12, 0, 15, 0, 12, 10, 12, 0, 16, 3, 15, 9, 14, 0, 18, 7, 16, 10, 15, 0, 22, 0, 16, 13, 16, 8, 23, 0, 18, 12, 23, 0, 24, 0, 19, 17, 20, 8, 27, 0, 24, 13, 21, 0, 30, 10, 22
Offset: 0

Views

Author

Amarnath Murthy, Apr 07 2003

Keywords

Comments

a(p) = 0 if p is prime.

Examples

			a(14) = 4 and the partitions are (12,2), (10,4), (8,6) and (7,7).
a(13) = 0 as for all r + s = 13, r > 0, s > 0, gcd(r,s) = 1.
		

Crossrefs

Programs

Formula

a(0) = 0; and for n >= 1, a(n) = floor((n-phi(n))/2), where phi(n)=A000010(n) is Euler's totient function. - Dean Hickerson, Apr 22 2003. Clarified by Antti Karttunen, Oct 30 2017

Extensions

More terms from Antonio G. Astudillo (afg_astudillo(AT)lycos.com), Apr 20 2003

A337983 Number of compositions of n into distinct parts, any two of which have a common divisor > 1.

Original entry on oeis.org

1, 0, 1, 1, 1, 1, 3, 1, 3, 3, 5, 1, 13, 1, 13, 7, 19, 1, 35, 1, 59, 15, 65, 1, 117, 5, 133, 27, 195, 1, 411, 7, 435, 67, 617, 17, 941, 7, 1177, 135, 1571, 13, 2939, 31, 3299, 375, 4757, 13, 6709, 43, 8813, 643, 11307, 61, 16427, 123, 24331, 1203, 30461, 67
Offset: 0

Views

Author

Gus Wiseman, Oct 06 2020

Keywords

Comments

Number of pairwise non-coprime strict compositions of n.

Examples

			The a(2) = 1 through a(15) = 7 compositions (A..F = 10..15):
  2  3  4  5  6   7  8   9   A   B  C    D  E    F
              24     26  36  28     2A      2C   3C
              42     62  63  46     39      4A   5A
                             64     48      68   69
                             82     84      86   96
                                    93      A4   A5
                                    A2      C2   C3
                                    246     248
                                    264     284
                                    426     428
                                    462     482
                                    624     824
                                    642     842
		

Crossrefs

A318717 is the unordered version.
A318719 is the version for Heinz numbers of partitions.
A337561 is the pairwise coprime instead of pairwise non-coprime version, or A337562 if singletons are considered coprime.
A337605*6 counts these compositions of length 3.
A337667 is the non-strict version, ranked by A337666.
A337696 ranks these compositions.
A051185 and A305843 (covering) count pairwise intersecting set-systems.
A101268 counts pairwise coprime or singleton compositions.
A200976 and A328673 are the unordered version.
A233564 ranks strict compositions.
A318749 is the version for factorizations, with non-strict version A319786.
A333228 ranks compositions whose distinct parts are pairwise coprime.
A335236 ranks compositions neither a singleton nor pairwise coprime.
A337462 counts pairwise coprime compositions.
A337694 lists numbers with no two relatively prime prime indices.

Programs

  • Mathematica
    stabQ[u_,Q_]:=And@@Not/@Q@@@Tuples[u,2];
    Table[Length[Join@@Permutations/@Select[IntegerPartitions[n],UnsameQ@@#&&stabQ[#,CoprimeQ]&]],{n,0,30}]
Showing 1-10 of 14 results. Next