A082046 Square array, A(n, k) = (k*n)^2 + 3*k*n + 1, read by antidiagonals.
1, 1, 1, 1, 5, 1, 1, 11, 11, 1, 1, 19, 29, 19, 1, 1, 29, 55, 55, 29, 1, 1, 41, 89, 109, 89, 41, 1, 1, 55, 131, 181, 181, 131, 55, 1, 1, 71, 181, 271, 305, 271, 181, 71, 1, 1, 89, 239, 379, 461, 461, 379, 239, 89, 1, 1, 109, 305, 505, 649, 701, 649, 505, 305, 109, 1
Offset: 0
Examples
Array, A(n, k), begins as: 1, 1, 1, 1, 1, 1, 1, 1, ... A000012; 1, 5, 11, 19, 29, 41, 55, 71, ... A028387; 1, 11, 29, 55, 89, 131, 181, 239, ... A082108; 1, 19, 55, 109, 181, 271, 379, 505, ... A069131; 1, 29, 89, 181, 305, 461, 649, 869, ... ; 1, 41, 131, 271, 461, 701, 991, 1331, ... ; 1, 55, 181, 379, 649, 991, 1405, 1891, ... ; 1, 71, 239, 505, 869, 1331, 1891, 2549, ... ; Antidiagonals, T(n, k), begin as: 1; 1, 1; 1, 5, 1; 1, 11, 11, 1; 1, 19, 29, 19, 1; 1, 29, 55, 55, 29, 1; 1, 41, 89, 109, 89, 41, 1; 1, 55, 131, 181, 181, 131, 55, 1; 1, 71, 181, 271, 305, 271, 181, 71, 1;
Links
- G. C. Greubel, Antidiagonals n = 0..50, flattened
Programs
-
Magma
[(k*(n-k))^2 + 3*(k*(n-k)) + 1: k in [0..n], n in [0..13]]; // G. C. Greubel, Dec 22 2022
-
Mathematica
T[n_, k_]:= (k*(n-k))^2 + 3*(k*(n-k)) + 1; Table[T[n,k], {n,0,13}, {k,0,n}]//Flatten (* G. C. Greubel, Dec 22 2022 *)
-
SageMath
def A082046(n,k): return (k*(n-k))^2 + 3*(k*(n-k)) + 1 flatten([[A082046(n,k) for k in range(n+1)] for n in range(14)]) # G. C. Greubel, Dec 22 2022
Formula
A(n, k) = (k*n)^2 + 3*k*n + 1 (square array).
A(k, n) = A(n, k).
A(n, n) = T(2*n, n) = A057721(n).
A(n, n+1) = A072025(n).
T(n, k) = (k*(n-k))^2 + 3*k*(n-k) + 1 (antidiagonals).
Sum_{k=0..n} T(n, k) = A082047(n) (antidiagonal sums).
From G. C. Greubel, Dec 22 2022: (Start)
Sum_{k=0..n} (-1)^k*T(n, k) = (1/2)*(1 + (-1)^n)*(1 - 2*n).
T(2*n+1, n-1) = T(2*n-1, n-1) = A072025(n-1). (End)