cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A082046 Square array, A(n, k) = (k*n)^2 + 3*k*n + 1, read by antidiagonals.

Original entry on oeis.org

1, 1, 1, 1, 5, 1, 1, 11, 11, 1, 1, 19, 29, 19, 1, 1, 29, 55, 55, 29, 1, 1, 41, 89, 109, 89, 41, 1, 1, 55, 131, 181, 181, 131, 55, 1, 1, 71, 181, 271, 305, 271, 181, 71, 1, 1, 89, 239, 379, 461, 461, 379, 239, 89, 1, 1, 109, 305, 505, 649, 701, 649, 505, 305, 109, 1
Offset: 0

Views

Author

Paul Barry, Apr 03 2003

Keywords

Examples

			Array, A(n, k), begins as:
  1,  1,   1,   1,   1,    1,    1,    1, ... A000012;
  1,  5,  11,  19,  29,   41,   55,   71, ... A028387;
  1, 11,  29,  55,  89,  131,  181,  239, ... A082108;
  1, 19,  55, 109, 181,  271,  379,  505, ... A069131;
  1, 29,  89, 181, 305,  461,  649,  869, ... ;
  1, 41, 131, 271, 461,  701,  991, 1331, ... ;
  1, 55, 181, 379, 649,  991, 1405, 1891, ... ;
  1, 71, 239, 505, 869, 1331, 1891, 2549, ... ;
Antidiagonals, T(n, k), begin as:
  1;
  1,  1;
  1,  5,   1;
  1, 11,  11,   1;
  1, 19,  29,  19,   1;
  1, 29,  55,  55,  29,   1;
  1, 41,  89, 109,  89,  41,   1;
  1, 55, 131, 181, 181, 131,  55,  1;
  1, 71, 181, 271, 305, 271, 181, 71,  1;
		

Crossrefs

Programs

  • Magma
    [(k*(n-k))^2 + 3*(k*(n-k)) + 1: k in [0..n], n in [0..13]]; // G. C. Greubel, Dec 22 2022
    
  • Mathematica
    T[n_, k_]:= (k*(n-k))^2 + 3*(k*(n-k)) + 1;
    Table[T[n,k], {n,0,13}, {k,0,n}]//Flatten (* G. C. Greubel, Dec 22 2022 *)
  • SageMath
    def A082046(n,k): return (k*(n-k))^2 + 3*(k*(n-k)) + 1
    flatten([[A082046(n,k) for k in range(n+1)] for n in range(14)]) # G. C. Greubel, Dec 22 2022

Formula

A(n, k) = (k*n)^2 + 3*k*n + 1 (square array).
A(k, n) = A(n, k).
A(n, n) = T(2*n, n) = A057721(n).
A(n, n+1) = A072025(n).
T(n, k) = (k*(n-k))^2 + 3*k*(n-k) + 1 (antidiagonals).
Sum_{k=0..n} T(n, k) = A082047(n) (antidiagonal sums).
From G. C. Greubel, Dec 22 2022: (Start)
Sum_{k=0..n} (-1)^k*T(n, k) = (1/2)*(1 + (-1)^n)*(1 - 2*n).
T(2*n+1, n-1) = T(2*n-1, n-1) = A072025(n-1). (End)