A082047 Diagonal sums of number array A082046.
1, 2, 7, 24, 69, 170, 371, 736, 1353, 2338, 3839, 6040, 9165, 13482, 19307, 27008, 37009, 49794, 65911, 85976, 110677, 140778, 177123, 220640, 272345, 333346, 404847, 488152, 584669, 695914, 823515, 969216, 1134881, 1322498, 1534183
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (6,-15,20,-15,6,-1).
Programs
-
Magma
[(n+1)*(n*(n-1)*(n^2+16)+30)/30: n in [0..40]]; // G. C. Greubel, Dec 24 2022
-
Mathematica
Table[(n+1)*(n*(n-1)*(n^2+16)+30)/30, {n,0,40}] (* G. C. Greubel, Dec 24 2022 *) LinearRecurrence[{6,-15,20,-15,6,-1},{1,2,7,24,69,170},40] (* Harvey P. Dale, Jan 25 2024 *)
-
PARI
a(n) = (n^5+15*n^3+14*n+30)/30; \\ Michel Marcus, Jan 22 2016
-
SageMath
[(n+1)*(n*(n-1)*(n^2+16)+30)/30 for n in range(41)] # G. C. Greubel, Dec 24 2022
Formula
a(n) = (n^5+15*n^3+14*n+30)/30 = (n+1)*(n^4-n^3+16*n^2-16*n+30)/30.
From G. C. Greubel, Dec 24 2022: (Start)
G.f.: (1 - 4*x + 10*x^2 - 8*x^3 + 5*x^4)/(1-x)^6.
E.g.f.: (1/30)*(30 +30*x +60*x^2 +40*x^3 +10*x^4 +x^5)*exp(x). (End)