cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A082114 Diagonal sums of number array A082110.

Original entry on oeis.org

1, 2, 9, 32, 89, 210, 441, 848, 1521, 2578, 4169, 6480, 9737, 14210, 20217, 28128, 38369, 51426, 67849, 88256, 113337, 143858, 180665, 224688, 276945, 338546, 410697, 494704, 591977, 704034, 832505, 979136, 1145793, 1334466, 1547273
Offset: 0

Views

Author

Paul Barry, Apr 04 2003

Keywords

Crossrefs

Programs

  • Magma
    [(n+1)*(n^4-n^3+26*n^2-26*n+30)/30: n in [0..50]]; // G. C. Greubel, Dec 22 2022
    
  • Mathematica
    LinearRecurrence[{6,-15,20,-15,6,-1}, {1,2,9,32,89,210}, 51] (* G. C. Greubel, Dec 22 2022 *)
  • SageMath
    [(n+1)*(n^4-n^3+26*n^2-26*n+30)/30 for n in range(51)] # G. C. Greubel, Dec 22 2022

Formula

a(n) = (n+1)*(n^4 - n^3 + 26*n^2 - 26*n + 30)/30.
From G. C. Greubel, Dec 22 2022: (Start)
G.f.: (1 - 4*x + 12*x^2 - 12*x^3 + 7*x^4)/(1-x)^6.
E.g.f.: (1/30)*(30 + 30*x + 90*x^2 + 50*x^3 + 10*x^4 + x^5)*exp(x). (End)

A082111 a(n) = n^2 + 5*n + 1.

Original entry on oeis.org

1, 7, 15, 25, 37, 51, 67, 85, 105, 127, 151, 177, 205, 235, 267, 301, 337, 375, 415, 457, 501, 547, 595, 645, 697, 751, 807, 865, 925, 987, 1051, 1117, 1185, 1255, 1327, 1401, 1477, 1555, 1635, 1717, 1801, 1887, 1975, 2065, 2157, 2251, 2347, 2445, 2545, 2647
Offset: 0

Views

Author

Paul Barry, Apr 04 2003

Keywords

Comments

From Gary W. Adamson, Jul 29 2009: (Start)
Let (a,b) = roots to x^2 - 5*x + 1 = 0 = 4.79128... and 0.208712...
Then a(n) = (n + a) * (n + b). Example: a(5) = 51 = (5 + 4.79128...) * (5 + 0.208712...) (End)
For n > 0: a(n) = A176271(n+2,n). - Reinhard Zumkeller, Apr 13 2010
a(n-2) = n*(n+1) - 5, n >= 0, with a(-2) = -5 and a(-1) = -3, gives the values for a*c of indefinite binary quadratic forms [a, b, c] of discriminant D = 21 for b = 2*n + 1. In general D = b^2 - 4*a*c > 0 and the form [a, b, c] is a*x^2 + b*x*y + c*y^2. - Wolfdieter Lang, Aug 15 2013
Numbers m > 0 such that 4m+21 is a square. - Bruce J. Nicholson, Jul 19 2017
Numbers represented as 151 in number base B. If 'digits' from B upwards are allowed then 151(2)=15, 151(3)=25, 151(4)=37, 151(5)=51 also. - Ron Knott, Nov 14 2017
If A and B are sequences satisfying the recurrence t(n) = 5*t(n-1) - t(n-2) with initial values A(0) = 1, A(1) = n+5 and B(0) = -1, B(1) = n, then a(n) = A(i)^2 - A(i-1)*A(i+1) = B(j)^2 - B(j-1)*B(j+1) for i, j > 0. - Klaus Purath, Oct 18 2020
The prime terms in this sequence are listed in A089376. The prime factors are given in A038893. With the exception of 3 and 7, each prime factor p divides exactly 2 out of any p consecutive terms. If a(i) and a(k) form such a pair that are divisible by p, then i + k == -5 (mod p). - Klaus Purath, Nov 24 2020

Crossrefs

First row of A082110.

Programs

Formula

a(n) = 2*n + a(n-1) + 4 (with a(0)=1). - Vincenzo Librandi, Aug 08 2010
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3); a(0)=1, a(1)=7, a(2)=15. - Harvey P. Dale, Apr 22 2012
Sum_{n>=0} 1/a(n) = 8/15 + Pi*tan(sqrt(21)*Pi/2)/sqrt(21) = 1.424563592286456286... . - Vaclav Kotesovec, Apr 10 2016
From G. C. Greubel, Jul 19 2017: (Start)
G.f.: (1 + 4*x - 3*x^2)/(1 - x)^3.
E.g.f.: (x^2 + 6*x + 1)*exp(x). (End)
a(n) = A014209(n+1) - 2 = A338041(2*n+1). - Hugo Pfoertner, Oct 08 2020
a(n) = A249547(n+1) - A024206(n-4), n >= 5. - Klaus Purath, Nov 24 2020

Extensions

New title (using given formula) from Hugo Pfoertner, Oct 08 2020

A082107 Diagonal sums of number array A082105.

Original entry on oeis.org

1, 2, 8, 28, 79, 190, 406, 792, 1437, 2458, 4004, 6260, 9451, 13846, 19762, 27568, 37689, 50610, 66880, 87116, 112007, 142318, 178894, 222664, 274645, 335946, 407772, 491428, 588323, 699974, 828010, 974176, 1140337, 1328482, 1540728
Offset: 0

Views

Author

Paul Barry, Apr 03 2003

Keywords

Crossrefs

Programs

  • Magma
    [(n^5+20*n^3+9*n+30)/30: n in [0..50]]; // G. C. Greubel, Dec 22 2022
    
  • Mathematica
    LinearRecurrence[{6,-15,20,-15,6,-1}, {1,2,8,28,79,190}, 51] (* G. C. Greubel, Dec 22 2022 *)
  • SageMath
    [(n^5+20*n^3+9*n+30)/30 for n in range(51)] # G. C. Greubel, Dec 22 2022

Formula

a(n) = (n^5 + 20*n^3 + 9*n + 30)/30.
G.f.: (1-4*x+11*x^2-10*x^3+6*x^4)/(1-x)^6 . - R. J. Mathar, Mar 27 2019
E.g.f.: (1/30)*(30 +30*x +75*x^2 +45*x^3 +10*x^4 +x^5)*exp(x). - G. C. Greubel, Dec 22 2022

A082112 a(n) = 4*n^2 + 10*n + 1.

Original entry on oeis.org

1, 15, 37, 67, 105, 151, 205, 267, 337, 415, 501, 595, 697, 807, 925, 1051, 1185, 1327, 1477, 1635, 1801, 1975, 2157, 2347, 2545, 2751, 2965, 3187, 3417, 3655, 3901, 4155, 4417, 4687, 4965, 5251, 5545, 5847, 6157, 6475, 6801, 7135, 7477, 7827, 8185, 8551
Offset: 0

Views

Author

Paul Barry, Apr 04 2003

Keywords

Comments

A row of number array A082110.

Crossrefs

Programs

Formula

a(n) = a(n-1) + 8*n + 6 (with a(0)=1). - Vincenzo Librandi, Aug 08 2010
G.f.: (1+12*x-5*x^2) / (1-x)^3. - R. J. Mathar, Dec 03 2014
a(n) = 3*a(n-1) -3*a(n-2) +a(n-3). - Wesley Ivan Hurt, Dec 22 2021
E.g.f.: (1 + 14*x + 4*x^2)*exp(x). - G. C. Greubel, Dec 22 2022

A082113 a(n) = n^4 + 5*n^2 + 1.

Original entry on oeis.org

1, 7, 37, 127, 337, 751, 1477, 2647, 4417, 6967, 10501, 15247, 21457, 29407, 39397, 51751, 66817, 84967, 106597, 132127, 162001, 196687, 236677, 282487, 334657, 393751, 460357, 535087, 618577, 711487, 814501, 928327, 1053697, 1191367
Offset: 0

Views

Author

Paul Barry, Apr 04 2003

Keywords

Comments

Main diagonal of number array A082110.

Crossrefs

Programs

  • Magma
    [n^4+5*n^2+1: n in [0..40]]; // G. C. Greubel, Dec 22 2022
    
  • Mathematica
    Table[n^4+5n^2+1,{n,0,40}] (* or *) LinearRecurrence[{5,-10,10,-5,1},{1,7,37,127,337},40] (* Harvey P. Dale, May 16 2019 *)
  • SageMath
    [n^4+5*n^2+1 for n in range(41)] # G. C. Greubel, Dec 22 2022

Formula

a(n) = n^4 + 5*n^2 + 1.
G.f.: (1+2*x+12*x^2+2*x^3+7*x^4) / (1-x)^5. - R. J. Mathar, Dec 03 2014
E.g.f.: (1 + 6*x + 12*x^2 + 6*x^3 + x^4)*exp(x). - G. C. Greubel, Dec 22 2022
Showing 1-5 of 5 results.