A082096 A 2nd order recursion: a(1)=a(2)=1; a(n) = prime(a(n-2)+a(n-1)) = A000040(a(n-2)+a(n-1)).
1, 1, 3, 7, 29, 151, 1069, 9887, 115891, 1666421, 28700933, 580669933, 13578126713, 362075579539, 10886955278951, 365589325548857, 13598064388599629, 556220494250764093
Offset: 1
Programs
-
Magma
a:= func< n | n lt 3 select 1 else NthPrime(Self(n-1) + Self(n-2)) >; [a(n): n in [1..12]]; // G. C. Greubel, Aug 31 2019
-
Mathematica
a[n_]:= a[n]= If[n<3, 1, Prime[a[n-1]+a[n-2]]]; Table[a[n], {n,13}] (* modified by G. C. Greubel, Aug 31 2019 *) nxt[{a_,b_}]:={b,Prime[a+b]}; Transpose[NestList[nxt,{1,1},13]][[1]] (* Harvey P. Dale, Oct 02 2013 *)
Extensions
a(15) from G. C. Greubel, Aug 31 2019
a(16)-a(18) from Chai Wah Wu, Sep 18 2019