cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A082141 A transform of C(n,7).

Original entry on oeis.org

1, 8, 72, 480, 2640, 12672, 54912, 219648, 823680, 2928640, 9957376, 32587776, 103194624, 317521920, 952565760, 2794192896, 8033304576, 22682271744, 63006310400, 172438323200, 465583472640, 1241555927040, 3273192898560
Offset: 0

Views

Author

Paul Barry, Apr 06 2003

Keywords

Comments

Eighth row of number array A082137. C(n,7) has e.g.f. (x^7/7!)exp(x). The transform averages the binomial and inverse binomial transforms.

Examples

			a(0) = (2^(-1) + 0^0/2)*C(7,0) = 2*(1/2) = 1 (using 0^0=1).
		

Crossrefs

Programs

  • Magma
    [(2^(n-1) + 0^n/2)*Binomial(n+7,n): n in [0..30]]; // G. C. Greubel, Feb 05 2018
  • Maple
    [seq (ceil(binomial(n+7,7)*2^(n-1)),n=0..22)]; # Zerinvary Lajos, Nov 01 2006
  • Mathematica
    Drop[With[{nmax = 50}, CoefficientList[Series[x^7*Exp[x]*Cosh[x]/7!, {x, 0, nmax}], x]*Range[0, nmax]!], 5] (* or *) Join[{1}, Table[2^(n-1)* Binomial[n+7,n], {n,1,30}]] (* G. C. Greubel, Feb 05 2018 *)
  • PARI
    my(x='x+O('x^30)); Vec(serlaplace(x^7*exp(x)*cosh(x)/7!)) \\ G. C. Greubel, Feb 05 2018
    

Formula

a(n) = (2^(n-1) + 0^n/2)*C(n+7,n).
a(n) = Sum_{j=0..n} C(n+7, j+7)*C(j+7, 7)*(1+(-1)^j)/2.
G.f.: (1 - 8*x + 56*x^2 - 224*x^3 + 560*x^4 - 896*x^5 + 896*x^6 - 512*x^7 + 128*x^8)/(1-2*x)^8.
E.g.f.: (x^7/7!)*exp(x)*cosh(x) (with 7 leading zeros).
a(n) = ceiling(binomial(n+7,7)*2^(n-1)). - Zerinvary Lajos, Nov 01 2006
From Amiram Eldar, Jan 07 2022: (Start)
Sum_{n>=0} 1/a(n) = 28*log(2) - 274/15.
Sum_{n>=0} (-1)^n/a(n) = 20412*log(3/2) - 124132/15. (End)