cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A082151 A transform of C(n,2).

Original entry on oeis.org

0, 0, 1, 12, 102, 760, 5295, 35364, 228956, 1445616, 8936685, 54252220, 324214242, 1911205608, 11132579003, 64170616020, 366497915640, 2076171038176, 11676266706969, 65242364726124, 362433045180830, 2002838101907160, 11015341078090503, 60321223747375492
Offset: 0

Views

Author

Paul Barry, Apr 07 2003

Keywords

Comments

Represents the mean of the second and fourth binomial transforms of C(n,2). Binomial transform of A082150

Crossrefs

Programs

  • Magma
    [Binomial(n,2)*(3^(n-2) + 5^(n-2))/2: n in [0..30]]; // G. C. Greubel, Feb 10 2018
  • Mathematica
    CoefficientList[Series[(x^2/(1-5*x)^3 + x^2/(1-3*x)^3)/2, {x,0,50}], x] (* or *) Table[Binomial[n,2]*(3^(n-2) + 5^(n-2))/2, {n,0,30}] (* G. C. Greubel, Feb 10 2018 *)
    LinearRecurrence[{24,-237,1232,-3555,5400,-3375},{0,0,1,12,102,760},30] (* Harvey P. Dale, Apr 10 2023 *)
  • PARI
    for(n=0,30, print1(binomial(n,2)*(3^(n-2) + 5^(n-2))/2, ", ")) \\ G. C. Greubel, Feb 10 2018
    

Formula

a(n) = C(n, 2)*(3^(n-2) + 5^(n-2))/2.
G.f.: (x^2/(1-5*x)^3 + x^2/(1-3*x)^3)/2.
a(n) = x^2*(76*x^3 - 51*x^2 + 12*x - 1)/((1-3*x)^3*(5*x-1)^3).
E.g.f.: x^2*exp(4*x)*cosh(x)/2.