cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A082164 Deterministic completely defined initially connected acyclic automata with 3 inputs and n+1 transient unlabeled states including a unique state having all transitions to the absorbing state.

Original entry on oeis.org

1, 7, 133, 5362, 380093, 42258384, 6830081860, 1520132414241, 447309239576913, 168599289097947589, 79364534944804317166, 45701029702436877135199, 31642128418550547009710906, 25960688434777959685891570936, 24926392120419324125117256758595, 27708074645788511889179577045508824
Offset: 1

Views

Author

Valery A. Liskovets, Apr 09 2003

Keywords

Comments

Coefficients T_2(n,k) form the array A082172. These automata have no nontrivial automorphisms (by states).

Crossrefs

Programs

  • Mathematica
    b[, 0, ] = 1; b[k_, n_, r_] := b[k, n, r] = Sum[Binomial[n, t] (-1)^(n - t - 1) ((t + r + 1)^k - 1)^(n - t) b[k, t, r], {t, 0, n - 1}];
    d3[n_] := d3[n] = b[3, n, 1] - Sum[Binomial[n - 1, j - 1] T3[n - j, j + 1] d3[j], {j, 1, n - 1}];
    T3[0, ] = 1; T3[n, k_] := T3[n, k] = Sum[Binomial[n, i] (-1)^(n - i - 1) ((i + k + 1)^3 - 1)^(n - i) T3[i, k], {i, 0, n - 1}];
    a[n_] := If[n == 1, 1, d3[n - 1]/(n - 2)!];
    Array[a, 20] (* Jean-François Alcover, Aug 29 2019 *)

Formula

a(n) := d_3(n)/(n-1)! where d_3(n) := b_3(n, 1)-sum(binomial(n-1, j-1)*T_3(n-j, j+1)*d_3(j), j=1..n-1); and T_3(0, k) := 1, T_3(n, k) := sum(binomial(n, i)*(-1)^(n-i-1)*((i+k+1)^3-1)^(n-i)*T_3(i, k), i=0..n-1), n>0.

Extensions

More terms from Jean-François Alcover, Aug 29 2019