cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A117228 Palindromes which are divisible by the product and by the sum of their digits.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 111, 2112, 4224, 13131, 21112, 21312, 31113, 42624, 211112, 234432, 1113111, 2111112, 2114112, 2118112, 21122112, 61111116, 111111111, 211121112, 211242112, 211262112, 213141312, 2111111112, 2112332112, 2114114112, 2131221312
Offset: 1

Views

Author

Giovanni Resta, Apr 22 2006

Keywords

Comments

Intersection of A082232 and A117057.
Are there infinitely many terms that don't contain a 1? - Derek Orr, Aug 25 2014

Examples

			42624 is divisible by 4*2*6*2*4 and by 4+2+6+2+4.
		

Crossrefs

Programs

  • PARI
    rev(n)=r="";d=digits(n);for(i=1,#d,r=concat(Str(d[i]),r));eval(r)
    for(n=1,10^7,d=digits(n);if(rev(n)==n,p=prod(i=1,#d,d[i]);if(p&&n%p==0&&n%sumdigits(n)==0,print1(n,", ")))) \\ Derek Orr, Aug 25 2014
  • Python
    from operator import mul
    from functools import reduce
    from gmpy2 import t_mod, mpz
    A117228 = sorted([mpz(n) for n in (str(x)+str(x)[::-1] for x in range(1, 10**8))
              if not (n.count('0') or t_mod(mpz(n), sum((mpz(d) for d in n)))
              or t_mod(mpz(n), reduce(mul, (mpz(d) for d in n))))]+
              [mpz(n) for n in (str(x)+str(x)[-2::-1] for x in range(10**8))
              if not (n.count('0') or t_mod(mpz(n), sum((mpz(d) for d in n)))
              or t_mod(mpz(n), reduce(mul, (mpz(d) for d in n))))])
    # Chai Wah Wu, Aug 25 2014
    

Extensions

More terms from Chai Wah Wu, Aug 22 2014

A334528 Palindromic numbers that are also Niven numbers and Smith numbers.

Original entry on oeis.org

4, 666, 28182, 45054, 51315, 82628, 239932, 454454, 864468, 2594952, 2976792, 3189813, 3355533, 4172714, 4890984, 5319135, 5367635, 5777775, 7149417, 7247427, 8068608, 8079708, 8100018, 8280828, 8627268, 9227229, 9423249, 21699612, 22544522, 24166142, 27677672
Offset: 1

Views

Author

Amiram Eldar, May 05 2020

Keywords

Comments

Witno (2014) proved that this sequence is infinite.

Examples

			666 is a term since it is palindromic, a Niven number (6 + 6 + 6 = 18 is a divisor of 666) and a Smith number (666 = 2 * 3 * 3 * 37 and 6 + 6 + 6 = 2 + 3 + 3 + 3 + 7).
		

Crossrefs

Intersection of A002113, A005349 and A006753.
Intersection of any two of the sequences A082232, A098834 and A334527.

Programs

  • Mathematica
    digSum[n_] := Plus @@ IntegerDigits[n]; palNivenSmithQ[n_] := PalindromeQ[n] && Divisible[n, (ds = digSum[n])] && CompositeQ[n] && Plus @@ (Last@# * digSum[First@#] & /@ FactorInteger[n]) == ds; Select[Range[10^5], palNivenSmithQ]

A334529 Numbers that are both binary palindromes and binary Niven numbers.

Original entry on oeis.org

1, 21, 273, 4161, 22517, 28347, 65793, 69905, 81913, 87381, 106483, 109483, 121143, 292721, 299593, 317273, 319449, 350933, 354101, 368589, 378653, 421811, 470951, 479831, 1049601, 1135953, 1171313, 1172721, 1208009, 1257113, 1269593, 1295481, 1332549, 1371877
Offset: 1

Views

Author

Amiram Eldar, May 05 2020

Keywords

Examples

			21 is a term since its binary representation, 10101, is palindromic, and 1 + 0 + 1 + 0 + 1 = 3 is a divisor of 21.
		

Crossrefs

Intersection of A006995 and A049445.
Cf. A082232.

Programs

  • Mathematica
    Select[Range[10^6], PalindromeQ[(d = IntegerDigits[#, 2])] && Divisible[#, Plus @@ d] &]
  • Python
    def ok(n): b = bin(n)[2:]; return b==b[::-1] and n%sum(map(int, b)) == 0
    def aupto(nn): return [m for m in range(1, nn+1) if ok(m)]
    print(aupto(1371877)) # Michael S. Branicky, Jan 21 2021
Showing 1-3 of 3 results.