A082246 Primes that are the sum of 7 consecutive primes.
197, 223, 251, 281, 311, 401, 431, 463, 523, 593, 659, 719, 757, 827, 863, 947, 991, 1063, 1171, 1753, 1901, 2347, 2393, 2647, 2689, 2731, 2777, 2819, 2953, 3347, 3389, 3533, 3643, 3701, 3761, 3821, 4177, 4217, 4451, 4493, 5507, 5717, 5849, 5927, 6029
Offset: 1
Examples
2 + 3 + 5 + 7 + 11 + 13 + 17 = 58 = 2*29 3 + 5 + 7 + 11 + 13 + 17 + 19 = 75 = 3*5^2 5 + 7 + 11 + 13 + 17 + 19 + 23 = 95 = 5*19 7 + 11 + 13 + 17 + 19 + 23 + 29 = 119 = 7*17 11 + 13 + 17 + 19 + 23 + 29 + 31 = 143 = 11*13 13 + 17 + 19 + 23 + 29 + 31 + 37 = 169 = 13*13 17 + 19 + 23 + 29 + 31 + 37 + 41 = 197 (prime)
Links
- Syed Iddi Hasan, Table of n, a(n) for n = 1..10000
Crossrefs
Cf. A180948.
Programs
-
Maple
Primes:= select(isprime, [seq(i,i=3..10000,2)]): S:= ListTools:-PartialSums(Primes): select(isprime,S[8..-1]-S[1..-8]); # Robert Israel, Dec 14 2017
-
Mathematica
Select[ListConvolve[{1,1,1,1,1,1,1},Prime[Range[200]]],PrimeQ] (* Harvey P. Dale, Jul 12 2013 *) Select[Total/@Partition[Prime[Range[200]],7,1],PrimeQ] (* Harvey P. Dale, Jul 24 2017 *)
-
PARI
\\ primes in the sum of m odd number of consecutive primes. m=7 psumprm(m,n) = { sr=0; s=0; for(j=1,m, s+=prime(j); ); for(x=1,n, s = s - prime(x)+ prime(x+m); if(isprime(s),sr+=1.0/s; print1(s" ")); ); print(); print(sr) }
Extensions
Corrected by Michael Somos, Feb 01 2004