A082277 Smallest prime that is the sum of prime(n) consecutive primes.
5, 23, 53, 197, 233, 691, 499, 857, 1151, 2099, 2399, 2909, 3821, 4217, 5107, 6079, 10091, 8273, 12281, 11597, 12713, 15527, 22741, 26041, 25759, 37447, 28087, 36607, 36067, 35527, 42463, 46181, 49279, 65033, 67271, 71011, 71167, 76099, 78139, 96001, 95107
Offset: 1
Examples
For prime(2) = 3, 2+3+5 = 10, 3+5+7 = 15, 5+7+11 = 23, 7+11+13 = 31. So a(2) = 23, the first prime that is the sum of 3 consecutive primes.
Crossrefs
Cf. A070281.
Programs
-
PARI
\\ First prime in the sum of a prime number of consecutive primes upto(n) = { sr=.2; print1(5", "); forprime(i=2,n, s=0; for(j=1,i, s+=prime(j); ); for(x=1,n, s = s - prime(x)+ prime(x+i); if(isprime(s),sr+=1.0/s; print1(s", "); break); ); ); /* print(); print(sr)*/}
-
Python
from sympy import isprime, nextprime, prime, primerange def a(n): pn = prime(prime(n)) smallest = list(primerange(2, pn+1)) while not isprime(sum(smallest)): pn = nextprime(pn) smallest = smallest[1:] + [pn] return sum(smallest) print([a(n) for n in range(1, 42)]) # Michael S. Branicky, May 23 2021
Formula
Sum of reciprocals converges to 0.28053...
a(n) = A070281(prime(n)). - Michel Marcus, Aug 07 2021