cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A082295 Numbers having more than two square divisors > 1.

Original entry on oeis.org

36, 64, 72, 100, 108, 128, 144, 180, 192, 196, 200, 216, 225, 252, 256, 288, 300, 320, 324, 360, 384, 392, 396, 400, 432, 441, 448, 450, 468, 484, 500, 504, 512, 540, 576, 588, 600, 612, 640, 648, 675, 676, 684, 700, 704, 720, 729, 756, 768, 784, 792, 800
Offset: 1

Views

Author

Reinhard Zumkeller, Apr 08 2003

Keywords

Comments

If n is in the sequence, so is m*n. - Charles R Greathouse IV, Oct 16 2015
The asymptotic density of this sequence is 1 - (6/Pi^2) * (1 + Sum_{p prime} (1/p^2 + 1/(p^3*(p+1)) + 1/(p^4*(p+1)))) = 0.07033321843992718294... . - Amiram Eldar, Sep 25 2022

Examples

			n=200 has 4 square divisors: 1, 4, 25 and 100, therefore 200 is a term.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[1000],Length[Rest[Select[ Divisors[#], IntegerQ[ Sqrt[ #]]&]]]> 2&] (* Harvey P. Dale, Jan 08 2014 *)
  • PARI
    is(n)=my(f=vecsort(factor(n)[,2],,4)); #f && (f[1]>5 || (#f>1 && f[2]>1)) \\ Charles R Greathouse IV, Oct 16 2015

Formula

A046951(a(n)) > 3.
a(n) < 17n for n > 25. - Charles R Greathouse IV, Oct 16 2015