A082385 For each n append T(n), T(T(n)), T^3(n), ..., T^r(n), where T(n) = A055012(n) and r is the smallest integer such that T^r(n) is one of the following numbers: 1, 55, 136, 153, 160, 370, 371, 407, 919.
1, 8, 512, 134, 92, 737, 713, 371, 27, 351, 153, 64, 280, 520, 133, 55, 125, 134, 92, 737, 713, 371, 216, 225, 141, 66, 432, 99, 1458, 702, 351, 153, 343, 118, 514, 190, 730, 370, 512, 134, 92, 737, 713, 371, 729, 1080, 513, 153, 1, 2, 8, 512, 134
Offset: 1
Programs
-
Mathematica
a = {}; For[n = 1, n < 9, n++, j = Plus @@ IntegerDigits[n]^3; AppendTo[a, j]; While[ !MemberQ[{1, 55, 136, 153, 160, 370, 371, 407, 919}, j], j = Plus @@ (IntegerDigits[j]^3); AppendTo[a, j]]]; a
-
PARI
digitcube2(m) = {y=0; for(x=1,m, digitcube(x) ) } digitcube(n) = { while(1, s=0; while(n > 0, d=n%10; s = s+d*d*d; n=floor(n/10); ); print1(s" "); if(s==1 || s==55 || s==153 || s==160 || s==370 || s==371 || s==407 || s==919 || s==136,break); n=s;) }
Extensions
Edited by Stefan Steinerberger, Sep 05 2007
Comments