cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A082388 a(1) = 1, a(2) = 2; further terms are defined by rules that for k >= 2, a(2^k-i) = a(2^k+i) for 1 <= i <= 2^k-1 and a(2^k) = a(2^(k-1)) + Sum_{i < 2^k} a(i).

Original entry on oeis.org

1, 2, 1, 6, 1, 2, 1, 20, 1, 2, 1, 6, 1, 2, 1, 68, 1, 2, 1, 6, 1, 2, 1, 20, 1, 2, 1, 6, 1, 2, 1, 232, 1, 2, 1, 6, 1, 2, 1, 20, 1, 2, 1, 6, 1, 2, 1, 68, 1, 2, 1, 6, 1, 2, 1, 20, 1, 2, 1, 6, 1, 2, 1, 792, 1, 2, 1, 6, 1, 2, 1, 20, 1, 2, 1, 6, 1, 2, 1, 68, 1, 2, 1, 6, 1, 2, 1, 20, 1, 2, 1, 6, 1, 2, 1, 232, 1, 2, 1
Offset: 1

Views

Author

Benoit Cloitre, Apr 14 2003

Keywords

Crossrefs

Cf. A006012.

Programs

  • Mathematica
    a[n_] := With[{e = IntegerExponent[n, 2]}, Sum[Binomial[e, 2k] 2^(e-k), {k, 0, Quotient[e, 2]}]];
    a /@ Range[1, 100] (* Jean-François Alcover, Sep 20 2019, from PARI *)
  • PARI
    a(n)={my(e=valuation(n,2)); sum(k=0, e\2, binomial(e, 2*k)*2^(e-k))} \\ Andrew Howroyd, Jul 31 2018

Formula

a(2^k) = 4*a(2^(k-1)) - 2*a(2^(k-2));
a(2^k) = round((1/2)*(2+sqrt(2))^k).
Multiplicative with a(2^e) = A006012(e), a(p^e) = 1 for odd prime p. - Andrew Howroyd, Jul 31 2018