cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A136098 Prime palindromic cyclops numbers.

Original entry on oeis.org

101, 16061, 31013, 35053, 38083, 73037, 74047, 91019, 94049, 1120211, 1150511, 1160611, 1180811, 1190911, 1250521, 1280821, 1360631, 1390931, 1490941, 1520251, 1550551, 1580851, 1630361, 1640461, 1660661, 1670761, 1730371
Offset: 1

Views

Author

Lekraj Beedassy, Mar 15 2008

Keywords

Comments

Prime entries of A138131.

Crossrefs

Programs

  • Maple
    f:= proc(n,d) local L,m,k,p;
      L:= convert(9^d+n,base,9);
      p:= add((1+L[d+1-i])*(10^(i-1)+10^(2*d+1-i)),i=1..d);
      if isprime(p) then p fi;
    end proc:
    [seq(seq(f(i,d),i=0..9^d-1),d=1..3)]; # Robert Israel, Feb 18 2018
  • Mathematica
    Select[Flatten[Table[Select[Range[10^(2n), 10^(2n+1)-1], PalindromeQ[ #] && DigitCount[ #, 10, 0]==1&&IntegerDigits[#][[(IntegerLength[#]+1)/2]]==0&], {n, 3}]],PrimeQ] (* James C. McMahon, Apr 27 2025 *)

A118592 Compound prime numbers. A prime is compound if its decimal digits can be divided into two contiguous subsets with equal sum.

Original entry on oeis.org

11, 101, 167, 211, 257, 347, 431, 523, 541, 617, 743, 761, 853, 1423, 1427, 1607, 1753, 1973, 2011, 2213, 2237, 2341, 2417, 2543, 2617, 2671, 2819, 2837, 3137, 3407, 3461, 3517, 3571, 3719, 3847, 4013, 4127, 4211, 4217, 4637, 4673, 4691
Offset: 0

Views

Author

Janos Lobb (janos(AT)lobb.com), May 17 2006

Keywords

Comments

Relates to the palindromic primes.

Examples

			40127 because 4+0+1+2=7
		

Crossrefs

Cf. A082435 and A083967.

Programs

  • Mathematica
    First[Last[Reap[i = 1; mx = 10^4; While[i <= mx, pr = Prime[i]; prdig = IntegerDigits[pr]; prlen = Length[prdig]; j = 1; While[j < prlen, prLeft = Take[prdig, {1, j}]; prRight = Take[prdig, {j + 1, prlen}]; If[Total[prLeft] != Total[prRight], j++; Continue[], Sow[pr]; Break[]]; ]; i++; ]; ]]]
Showing 1-2 of 2 results.