cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A138131 Palindromic cyclops numbers.

Original entry on oeis.org

0, 101, 202, 303, 404, 505, 606, 707, 808, 909, 11011, 12021, 13031, 14041, 15051, 16061, 17071, 18081, 19091, 21012, 22022, 23032, 24042, 25052, 26062, 27072, 28082, 29092, 31013, 32023, 33033, 34043, 35053, 36063, 37073, 38083
Offset: 1

Views

Author

Omar E. Pol, Mar 09 2008

Keywords

Comments

For prime entries in the sequence see A136098. - Lekraj Beedassy, Mar 15 2008, May 21 2008

Examples

			101 is a member because 101 is a palindromic number A002113 and also a cyclops number A134808.
		

Crossrefs

Programs

  • Maple
    f:= proc(n,d) local L,m,k;
      L:= convert(9^d+n,base,9);
      add((1+L[d+1-i])*(10^(i-1)+10^(2*d+1-i)),i=1..d)
    end proc:
    seq(seq(f(n,d),n=0..9^d-1),d=0..2); # Robert Israel, Feb 18 2018
  • Mathematica
    Join[{0},Flatten[Table[Select[Range[10^(2n),10^(2n+1)-1],PalindromeQ[ #] && DigitCount[ #,10,0]==1&&IntegerDigits[#][[(IntegerLength[#]+1)/2]]==0&],{n,2}]]] (* Harvey P. Dale, Dec 03 2022 *)

A183058 Cyclops Sophie-Germain primes.

Original entry on oeis.org

509, 809, 12011, 12041, 13049, 14081, 16091, 18041, 21011, 21089, 22013, 22079, 23099, 25073, 28019, 29021, 29033, 31019, 33023, 33053, 35069, 35081, 35099, 36083, 37013, 37049, 38039, 39089, 41081, 42023, 42071, 42089, 43013
Offset: 1

Views

Author

Omar E. Pol, Dec 26 2010

Keywords

Comments

Sophie Germain primes which are also Cyclops numbers.

Examples

			509 is in the sequence because 509 is a Sophie Germain prime A005384 and it is also a Cyclops number A134808.
		

Crossrefs

Programs

  • Maple
    isA005384 := proc(n) isprime(n) and isprime(2*n+1) ; end proc:
    isA134808 := proc(n) local dgs,ndgs; dgs := convert(n,base,10) ; mdg := (nops(dgs)+1)/2 ; if type(nops(dgs),'even') then false; elif n = 0 then true; else if op(mdg,dgs) <> 0 then false; else if mul(op(k,dgs),k=1..mdg-1) =0 or mul(op(k,dgs),k=mdg+1..nops(dgs)) = 0 then false; else true; end if; end if; end if; end proc:
    isA183058 := proc(n) isA005384(n) and isA134808(n) ; end proc:
    for n from 0 to 50000 do if isA183058(n) then printf("%d,",n); end if; end do: # R. J. Mathar, Jan 05 2011
  • Mathematica
    csgpQ[n_]:=Module[{idn=IntegerDigits[n],len},len=Length[idn];PrimeQ[2n+1]&&OddQ[len]&&idn[[(len+1)/2]]==0&&Count[idn,0]==1]; Select[Prime[ Range[ 4500]],csgpQ] (* Harvey P. Dale, Jun 06 2020 *)

Formula

A005384 INTERSECT A134808.
Showing 1-2 of 2 results.