A082447 a(n) = the number k such that s(k)=0 where s(0)=n and s(i)=s(i-1)-(s(i-1) modulo (i+1)).
1, 2, 2, 3, 3, 4, 4, 4, 4, 5, 5, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 10, 10, 10, 10, 10, 10, 10, 10, 11, 11, 11, 11, 11, 11, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 13, 13, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 15, 15, 15
Offset: 1
Keywords
Examples
For n=4, s(0)=4, 4 ->4-4 mod 1=4 ->4-4 mod 2=4 ->4-4 mod 3=3 ->3-3 mod 4=0, hence s(4)=0 and a(4)=4. For n=6, s(0)=6, s(1)=6-6 mod 2=6, s(2)=6-6 mod 3=6, s(3)=6-6 mod 4=6-2=4, s(4)=4-4 mod 5=0, hence a(6)=4.
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
Flatten@Table[First@Position[Rest@FoldList[#1-Mod[#1,#2]&,i,Range[2,i+1]],0], {i,30}] (* Birkas Gyorgy, Feb 26 2011 *)
-
PARI
a(n)=if(n<1, 0, s=n; c=1; while(s-s%c>0, s=s-s%c; c++); c--) \\ corrected by Dan Dima, Jan 18 2025
Formula
Conjecture: a(n) = sqrt(Pi*n) + O(1)
a(n) = A073047(n) - 1.
Extensions
Name corrected by Dan Dima, Jan 18 2025
Comments