A082466 Least k>=1 such that n^2+kn-1 and n^2+kn+1 are twin primes.
3, 1, 1, 11, 1, 1, 53, 1, 3, 5, 7, 3, 11, 16, 1, 11, 43, 6, 11, 1, 1, 8, 13, 1, 17, 7, 3, 11, 43, 4, 11, 4, 7, 8, 31, 9, 17, 1, 9, 35, 1, 4, 53, 4, 7, 41, 43, 6, 23, 1, 17, 8, 67, 1, 5, 4, 17, 11, 1, 7, 197, 4, 3, 11, 25, 1, 227, 7, 3, 14, 157, 19, 11, 16, 3, 71, 43, 6, 53, 7, 7, 44, 31, 3, 41
Offset: 1
Keywords
Links
- R. J. Mathar, Table of n, a(n) for n = 1..1000
Programs
-
Maple
A082466 := proc(n) local k,p ; for k from 1 do p := (n+k)*n-1 ; if isprime(p) and isprime(p+2) then return k; end if; end do: end proc: # R. J. Mathar, Jul 20 2012
-
Mathematica
lk[n_]:=Module[{k=1},While[!And@@PrimeQ[n^2+k*n+{1,-1}],k++];k]; Array[ lk,90] (* Harvey P. Dale, Nov 25 2013 *)
-
PARI
a(n)=if(n<0,0,k=1; while(isprime(n^2+k*n+1)*isprime(n^2+k*n-1)==0,s++); k)