cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A279436 Number of nonprimes less than or equal to n that do not divide n.

Original entry on oeis.org

0, 0, 0, 0, 1, 1, 2, 1, 3, 4, 5, 3, 6, 6, 7, 6, 9, 7, 10, 8, 11, 12, 13, 9, 14, 15, 15, 15, 18, 15, 19, 16, 20, 21, 22, 18, 24, 24, 25, 22, 27, 24, 28, 26, 27, 30, 31, 25, 32, 31, 34, 33, 36, 32, 37, 34, 39, 40, 41, 34, 42, 42, 41, 40, 45, 43, 47, 45, 48, 46, 50, 42, 51, 51, 50, 51, 54, 52, 56, 50, 55, 58, 59, 52, 60, 61, 62, 59, 64, 57, 65, 64, 67, 68, 69, 62, 71, 69, 70, 68
Offset: 1

Views

Author

Ilya Gutkovskiy, Dec 12 2016

Keywords

Examples

			a(10) = 4 because 10 has 4 divisors {1,2,5,10} therefore 6 non-divisors {3,4,6,7,8,9} out of which 4 are nonprimes {4,6,8,9}.
		

Crossrefs

Programs

  • Mathematica
    Table[n - PrimePi[n] - DivisorSigma[0, n] + PrimeNu[n], {n, 1, 100}]
  • PARI
    for(n=1,50, print1(n - primepi(n) - numdiv(n) + omega(n), ", ")) \\ G. C. Greubel, May 22 2017
    
  • PARI
    first(n)=my(v=vector(n),pp); forfactored(k=1,n, if(k[2][,2]==[1]~, pp++); v[k[1]]=k[1] - pp - numdiv(k) + omega(k)); v \\ Charles R Greathouse IV, May 23 2017
    
  • Python
    from sympy import primepi, divisor_count, primefactors
    def a(n): return 0 if n==1 else n - primepi(n) - divisor_count(n) + len(primefactors(n)) # Indranil Ghosh, May 23 2017

Formula

G.f.: A(x) = B(x) + C(x) - D(x), where B(x) = Sum_{k>=1} x^(2*k+1)/((1 - x^k)*(1 - x^(k+1))), C(x) = Sum_{k>=1} x^prime(k)/(1 - x^prime(k)), D(x) = Sum_{k>=1} x^prime(k)/(1 - x).
a(n) = n - A000720(n) - A000005(n) + A001221(n).
a(n) = A062298(n) - A033273(n).
a(n) = A049820(n) - A048865(n).
a(n) = A229109(n) - A082514(n).
a(A000040(n)) = A065890(n).
a(A000040(n)) + 1 = A014689(n).
A000040(n) - a(A000040(n)) = n + 1.
Showing 1-1 of 1 results.